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ABSTRACT

Tag inference is an important task in the business of video platforms
with wide applications such as recommendation, interpretation, and
more. Existing works are mainly based on extracting video infor-
mation from multiple modalities such as frames or music, and then
infer tags through classification or object detection. This, however,
does not apply to inferring generic tags or taxonomy that are less
relevant to video contents, such as video originality or its broader
category, which are important in practice. In this paper, we claim
that these generic tags can be modeled through the semantic rela-
tions between videos and tags, and can be utilized simultaneously
with the multi-modal features to achieve better video tagging. We
propose TRANSFUSION, an end-to-end supervised learning frame-
work that fuses multi-modal embeddings (e.g., vision, audio, texts,
etc.) with the knowledge embedding to derive the video represen-
tation. To infer the diverse tags following heterogeneous relations,
TransFusioN adopts a dual attentive approach to learn both the
modality importance in fusion and relation importance in inference.
Besides, it is general enough and can be used with the existing
translation-based knowledge embedding approaches. Extensive
experiments show that TRANsFusioN outperforms the baseline
methods with lowered mean rank and at least 9.59% improvement
in HITS@10 on the real-world video knowledge graph.

CCS CONCEPTS

» Information systems — Multimedia and multimodal re-
trieval; Data mining; « Computing methodologies — Knowl-
edge representation and reasoning; Machine learning.
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1 INTRODUCTION

As a rapidly developing form of media, video platforms such as
Youtube and Tiktok have become one of the most important ways
of information acquiring, entertaining, and socializing for people
in the world. Long videos and short videos have thus drawn much
attention in both industry and academia, and one most fundamental
task in this field is tag inference. In tag inference, brief descriptions
about the videos are summarized as a set of tags, and the goal is to
assign the most relevant ones to a specific video. Tag inference has
wide application such as searching, personalization, and more.

Existing approaches for video tagging in CV (Computer Vision)
are mainly based on multi-label classification, object detection, or
label propagation [7, 13, 26]. These approaches generally focus on
the content of the video to decide what to tag, such as specific
objects, scenes, actions, or locations. For example in Figure 1, the
tag “Cats” and “Pets” are assigned to video 1 that describes the
casual life of house cats. However, as a form of complex media,
real-world videos are often associated with tags related to the high-
level knowledge such as the meta-info or categorization. These tags
and their inter-relationship are critical for downstream tasks such
as recommendation or personalization. In the previous example,
video 1 is tagged “Catlover” to characterize its author, which cannot
be inferred using the CV techniques as it does not appear in the
video. Besides, the relationship between “Pets” and “Nature” are also
important to infer the similarity between the well-tagged (video
1) and weakly-tagged (video 3) videos, but such relation cannot be
established through the above mentioned approaches. The key issue
is that simply inferring tags through the single relation “content
appearing in the video” cannot handle tags that are beyond video
contents and assigned with different semantic meanings.

To model the large-scale multi-relational data, knowledge graphs
(KG) or knowledge bases such as DBpedia [16] and YAGO [22]
are successfully applied in the industry. Knowledge embedding
has been widely studied due to its superiority representing the
plausibility between entities under heterogeneous relations, and
has achieved promising results in knowledge-drive tasks such as
link prediction [12, 39] and knowledge alignment [4]. The main idea
is to encode entities as low-dimensional vectors and the relation is
encoded in the form of vector algebra by following the knowledge
graph connectivity, e.g., the translation vector from a header to the
tail [2]. However, existing approaches mainly focus on the single
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Figure 1: Knowledge embeddings based on graph connectivity can-
not infer tags for videos with limited connections or new videos (e.g.,
video 3 and 4). On the contrary, this task can be better addressed
by incorporating information from multi-modality (e.g., visual im-

ages). In this example, video 3 and 4 can be reasonably tagged based
on the similarity of key frames.

Knowledge Graph

textual modality and embed entities based on the graph connectivity.
As videos contain rich information across multiple modalities such
as vision, sound, and texts, embeddings based on graph connectivity
only are insufficient for tag inference. For example in the knowledge
graph depicted in Figure 1, while both video 1 and 2 are well tagged,
it is hard to infer reasonable tags for video 3 as no videos are
connected to “Nature”. It is even harder for new videos such as
video 4 since it has not connected to entities in the established
KG. On the other hand, this task could be better addressed if the
associated key frames (visual modality) are leveraged. In the above
example, both video 3 and 4 can be reasonably tagged by looking
into their visually similar videos, i.e., video 1 and 2, respectively.
In this paper, we claim that the multi-modality features for videos,
and the semantic relation between videos and tags can be uti-
lized simultaneously to achieve a better video tagging. We propose
TRANSFUSION, a general embedding fusion approach for knowl-
edge graphs that integrates the pretrained video embeddings from
multiple modalities. Specifically, we propose a partially-trainable
model to fuse both the learnable entity KG embeddings and the
pretrained video embeddings from multiple modalities. By follow-
ing the predefined scoring function, the fused video embeddings
are then used to derive embeddings for semantic relations, which
are further used to infer tags as the regular link prediction task.
TRANSFUSION leverages a dual attention mechanism to look into
both the importance of multiple modalities in representing the
videos, as well as the importance of multiple relations in tag in-
ference. “TRANSFUSION” gets the name from the use of attentive
fusion for video modalities. It also works seamlessly with a broad
class of translation-based embedding models for knowledge graph,
pioneered and represented by the TransE algorithm. We hope this
work could benefit researchers and practitioners addressing similar
tasks in the video media industry, and motivates its usage due to
its generality to be applied to a broad class of existing works in the
field, which is desiring property in practice. Our contributions are:

e New problem formulation We formulate video tag infer-
ence through heterogeneous relations as a knowledge em-
bedding problem, which is the first study in the field with
such formulation.

¢ Novel framework We propose a novel dual attentive ap-
proach that learns both the modality importance in fusion
and relation importance in tag inference. Besides, the frame-
work is generally applicable to translation-based graph em-
bedding approaches.

¢ Extensive experiments We conduct extensive experiments
with TRANsFusioN and show that it achieves state-of-the-
art performance on the tag inference task with promising
generality and scalability.

2 RELATED WORK

Knowledge Graph (KG) Embeddings Most works in the litera-
ture represent entities and relations into the low-dimensional vector
space R4 [2, 19, 39]. Some works use other space such as tensor
space [30].The existing works can be categorized into transnational
distance models or semantic matching models. Distance-based mod-
els measure the plausibility between h and t through translation
based on distance of the entity representation. For example, the
forerunner work TransE [2] proposes the additive translation as
fr(ht) =l h+r—t ||z, /1,, and achieves promising results on 1-
to-1 relations. Based on TransE, a series of extensions such as
TransH [39], TransD [12], etc. were proposed to better handle multi-
way relations. Semantic-matching-based methods propose to match
entities and relations through linear or bilinear transformation.
For example, SME [1] proposes both linear and bilinear matching
blocks. DistMult [41] proposes a simplified bilinear transformation
as f-(h,t) = hT diag(M,)t. Unlike the above KG embedding meth-
ods, TRANSFUSION incorporates video embeddings from 3 different
modalities (vision, audio and text) to represent the entities in a KG,
and could be generally applied to existing distance-based models.

Multi-modality Embeddings & Fusion Early works in video vi-
sual representation learning are mainly based on manually-crafted
features [15, 36]. Recently, spatial-temporal features have been
widely used with convolutional neurual networks (CNNs) to achieve
advancement, Some work propose to learn the spatial and temporal
features separately, for example, [7] adopts the two-stream net-
works, [9, 14, 37] learn spatial features with 2D-CNNs and learn
temporal features with specially designed modules. There are also
works learning them jointly through 3D-CNNss [3, 34]. As for ex-
tracting auditory representation, [23] proposes to use MFCC fea-
tures, and [11] learn audio semantic representation with spectro-
gram features feeding to a VGG network. To derive sentence-level
semantic features, early work adopts manually-crafted kernels
or NLP tools [28]. As deep learning develops, recent works pro-
poses to use end-to-end models with raw sentences and pre-trained
word representations learned by Skip-gram and Continuous Bag-
of-Words as inputs [24], and learn through CNN [44] or RNN [45].
Most recently, [6, 42] propose fine-tuning base representation mod-
els with transformers and achieve the state of the art performance
for several NLP tasks. In terms of fusion, DeepCrossing [29] pro-
poses a deep neural network model that automatically combines
different forms of textual features such as tri-letter grams to pro-
duce superior results in user click prediction. In the fusion process,
the attention mechanisms [21, 35] are generally adopted by the
deep models where the goal is to improve the performance by high-
lighting valuable latent features. Relevant techniques such as gated



Table 1: Data statistics and properties. For “Modalities”, “V”: vision,
“A”: audio, and “T”: title.

Data # Entities #Edges  # Relation_types Modalities
Company-200K 32527 120001 20 {V,A, T}
Company-300K 53150 330001 20 {V,A, T}
Company 1000014 9846740 86 {V,A, T}
FB15K 14541 292582 237 {v}

fusion networks [17, 27] or graph-based fusion [43] are proposed
to handle CV or NLP tasks. For KG, there are works with specific
targets, such as using the auxiliary information from the texts [38]
for fact reasoning, or from images [40] for classification. However,
these works either align the single external modality, or focus on
image classification. To the best of our knowledge, our work is
the first that fuses embeddings from visual, auditory and textual
modalities to conduct video tag inference in multi-relational data.

3 DATA

In this section, we introduce the datasets, discuss how we processed
and cleaned them, and give descriptive analyses that motivate our
methodology in Section 4. We provide data statistics in Table 1.

3.1 Video KG data

Our new video corpus is collected from the content library of a
major consumer video platform, which consists of over 1 million
videos during 3 weeks in June, 2020 with over 200 attributes. In
the JSON format raw data, each record describes a video with
attributes that are either Al generated or manually labeled, such as
“tag”, “has_person”, “originality”, etc. We filtered out irrelevant
attributes such as those describe the visual quality (e.g., resolution,

picture scales) and formed the corpus Companys.

3.1.1 Videos. Given a video, we consider 3 modalities: V: visual
frames (images), A: background music (BGM) and 7 : textual title.
To get embeddings from 3 modalities, we leverage a dataset in larger
scale that consists of over 7 million videos in 380 classes from the
same business. The 380 tags include visual objects such as “Cats”
and “Vehicles”, as well as general concepts or taxonomy such as
“Science & technology”. This labeled dataset is collected in 2019 and
does not overlap with Company. We train a series of classification
models for the 3 modalities, and extract features inputting to the last
fully-connected output layer as the embedding of that modality. We
detail the discussion in Section 7.1 of the supplementary material.

3.1.2  Relation & Tags. To facilitate the inference task, we construct
the knowledge graph by transferring the attribute values from the
input data into semantic relations and tags. We defined a mapper
to parse the attributes of each video and generate their semantic
tags. For example, given a video record with the attribute-value pair
“has_characters: male”, we use “has_characters” as the rela-
tion and gender “Male” as the tag. The same relation can also be used
to describe the other videos with different tags such as “Female”
or “Neutral”. Another attribute-value pair “src_flag: original”
indicates the originality of the video source, and can be transferred
into relation“src_flag” and tags “Originality/Derivation”. Based
on the characteristics of possible tags related to the videos and gen-
eral notions, we have the following categorization for the tags.

o Modality-related This type of tags are based on information
from a specific modality such as an object in the video frames,
the music style of the BGM, or the keyword in the video title.
An example is the above “{Male/Female/Neutral}” which
can be inferred through the relation “has_characters”. An-
other example is the names of actors/celebrities appearing
in the video following “has_actor”.

Meta-info This type contains flexible tags generated by man-
ual annotation to describe the video, a general notion or the
video taxonomy. Examples in this category include the above
“{Originality / Derivation}” following the “src_flag”,
and “{Frontpage / Regularpage}” indicating the popular-
ity of the video following “if_frontpage”.

Tags are created carefully to avoid ambiguity in the constructed
knowledge graph, and to ensure each tag is unique and specific
to one relation. Also, we manually connect these tags based on
their semantic relations according to the public knowledge base
DBpedia. For example, actors participating in different videos are
connected with the relation “befriends” to indicate their personal
relationship. Therefore, the resultant knowledge graph Company
contains entities that indicate either a video or a tag, as well as rich
“video-tag” and “tag-tag” relations as shown in Figure 1.

3.2 Public KG data

Due to the lack of public video-tag data, we leverage the benchmark
knowledge graph Freebase (FB15K237) in the KG literature and the
associated public images to show the effectiveness of TRANSFuUsION
in embedding fusion. For the entities in Freebase, we adopt the
associated visual information from ImageGraph [25], which is also
leverged in MMKG (Multimodal Knowledge Graphs) [20] to perform
entity alignment between pairs of KGs. Each entity in Freebase
has up to 25 relevant images scaled into the same size. To derive the
visual embeddings, we pretrained the classification model following
ResNet-101 [10] on the public ImageNet dataset [5] that consists
of 1.28 million training images in 1000 classes. For each entity, we
randomly sampled one representative image as the input to the
model, and extracted the dense feature immediately prior to the
last fully-connected output layer as the visual embedding.

4 METHOD

While the semantic/taxonomic tags of a video can be inferred
through KG embeddings, many tags are assigned based on the
specific modality (e.g., frames or BGM), and such information can-
not be captured by connectivity-based KG embedding approaches
only. Thus, in the constructed KG that reflects multiple relationships
between videos and tags, the fused embeddings of videos should
consist of (1) the knowledge segment that facilitates tag inference
through semantic relations, and (2) the supplementary segment
containting pretrained embeddings from the considered modali-
ties such as vision or audio. In addition, as a tag can be relevant
to more than one modalities through multiple semantic relations
(e.g., the tag “music_video” can be assigned based on the audio or
vision-related relation), highlighting the impact of each modality
and relation in deriving the fused KG representation is central in
designing TRANSFUsION. Specifically, we consider the following
components: (C1) Modeling the importance of each modality in the
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Figure 2: Workflow. TRANSFUSION concatenates the knowledge (red
dashed box) and supplementary multi-modal embeddings (black
dashed box) as the fused video represntation and controls their im-
pacts with the shared attention module. Then, TRANSFUSION uses
the predefined KG scoring function to jointly update the attention
values and the embedding of tags, relations and the knowledge seg-
ment of videos (green rectangles) based on KG connectivity.

fused video embedding (Section 4.2), (C2) Highlighting important
relations (Section 4.3), and (C3) Tag inference as the link predic-
tion task via a given translation-based KG scoring function and
loss (Section 4.4). Next, we describe each component in detail. The
workflow is depicted in Figure 2.

4.1 Preliminaries

First, we briefly overview the important notations used in this pa-
per, (symbols are listed in Table 2). As mentioned in Section 3, our
constructed KG contains the “video-tag” and “tag-tag” semantic
relations. Thus, in the tuple format representation (h,r,t), h in-
dicates either a video (hyjq) or tag (htag) and t indicates the tag
only. An important design target is to generally facilitate the broad
class of translation-based knowledge embedding approaches rep-
resented by TransE for modality fusion in tag inference. There-
fore, we assume a predefined scoring function f; is given, such as
fr(h,t) = ||h +r — t|| that describes the plausibility between enti-
ties. In addition, f; is also the rule to infer tags. Next we specify
the notations used to represent the fused video embedding hy;q4.
At a high level, TRaNsFusion fuses video embeddings through
concatenation (shown in Figure 2) as it is a practical and lossless
technique to preserve video characteristics across different modali-
ties [29]. We denote the general form of the fused video embedding
as hyjq = [z('K), {z(M") }] where z{%) indicates the video knowl-
edge embedding, and z(M4) indicates the video embedding from
the supplementary modality (M; € {V, A, T}). In this work, we
take account of up to 3 modalities and do not consider duplication
in the fused entity embedding, i.e, M;—1 # M;, i < 3.

4.2 Multi-modality Fusion for Videos

As a practical way to preserve video info from the supplementary
modalities M, concatenating the pretrained embeddings implicitly
assumes that each modality is equally important, which does not

Table 2: Major symbols and their definition

Symbol Definition

G=A{(hrt)} a knowledge graph (KG) consisting a set of tuples

E,R the set of entities and relations in the KG, h,t € E,r € R
(h,r,t) embeddings of the header, relation and tail

hyig, htag fused video embedding and tag embedding as the header
K the knowledge modality

M={V,A T} setof supplementary modalities (vision, audio and text)
z(*) the video embedding from an arbitrary modality (x)
the scoring function of the knowledge embedding

A
{W,b},{V,a} learnable parameters in the projection and attention layer

hold for real-world video data. To capture the importance between
the knowledge and the supplementary modalities, TRANSFUsION
adopts a partially-trainable embedding fusion model that consists of
both the trainable knowledge segment and the fixed pretrained sup-
plementary segment (shown in Figure 3). For the trainable segment,
TrANSFUSION uses the predefined f; to update the knowledge em-
bedding that captures video connectivity in the knowledge graph.
For the pretrained segment, TRANSFUSION concatenates the video
embeddings projected to the knowledge space from the original
modal space M. Altogether, TRANSFuUSION leverages the attention
mechanism to measure the importance of each modality (C1) in
the fused video embedding. Next we introduce the projection and
attention component of our partially-trainable fusion model.

4.2.1 Cross-Modality Transformation. In TRANSFUSION, the first
step of embedding fusion is to project the pretrained video em-
beddings from the original modal space into the knowledge space
through a non-linear affine transformation (projection layer):

Z(MD) _ o‘(e(Mi) WM +b) (1)

where e M) € RI™ denotes the pretrained video embedding
from modality M;, i € {1, 2,3} indexes the supplementary modality
and M; € (V. AT). W e %4 and b ¢ R?™ are the
learnable transform matrix and bias vector, respectively. o indicates
the non-linear operator. Thus, the pretrained embeddings in the
original space are transformed into the knowledge space K, and
the vanilla form of the fused video embedding is as follows.

hvid = [ Z((K) 5 Z(Ml), c )Z(Mi)] (2)
trainable pretrained.

we use M’ to denote all modalities including K, and thus the di-
mension of hyjq = |M’|d®). In this way, TRANSFUSION projects
the pretrained visual or textual embeddings from their original
modal space into the same knowledge space with the same di-
mension. More importantly, each modality in the concatenated

Knowledge emb. Raw supplementary emb.

| Projection layer |

Attention layer

Composed

vector ilKnowledge emb.| Visual emb. | Audio emb. |

Pretrained

Trainable

Figure 3: The partially trainable embedding fusion model. The com-
posed vector is used as the fused video embedding h,;q in KG. Each
modality contributes independently to derive embeddings of se-
mantic relations as translation through vector operation.
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Figure 4: Given a tuple (A, r, ¢) that indicates the video, semantic re-
lation and the associated tag, TRANsFusIoN learns the modality im-
portance in inferring tag ¢ through the relation r. In this example,
the knowledge segment is more important to infer tags following
the “belongs_to” relation, while the frame segment is more impor-
tant to infer tags following the “contains” relation.

video representation could contribute independently to inferring
the plausibility between a video and the associated tags through
vector operation in general translation models. We detail the discus-
sion in Section 4.4. Next we discuss how to model the importance
of each modality through the self-attention mechanism (C1).

4.2.2  Modality Attention. Given the fused video representation
containing both the knowledge the pretrained supplementary em-
beddings, TRANSFUsION learns the importance vector p that rep-
resents the impact of each modality in referring tag ¢ following
the semantic relation r as a tuple (h, r,t). As the example shown in
Figure 4, visual embeddings are more important to infer content-
related tags such as “Cat” or “Pets”, and thus should be assigned
higher weights when r indicates semantics such as "contains". On
the other hand, the knowledge embeddings are more important to
infer semantics-related tags such as the meta-info or the general
description, as well as the tag-tag relations that are irrelevant to
video contents. TRANSFuUsION adopts the self-attention mechanism
to learn the modality importance as the weights for both the train-
able and pretrained embeddings across all modalities. Putting them
together, the fused video embedding is denoted as:

hyg=pOz= [po'Z(q(),m'Z(Ml),”',pi'Z(M")] 3)

where O denotes the element-wise multiplication, and p; measures
the importance of each modality. To compute p;, we first define the
energy coefficient of modality M; as e; = a((z(Mi)V)T), where
Ve RA7Oxd" represents the shared linear transformation to the
hidden space. a represents the attention mechanism R S Ras
the single-layer neural network, which is parameterized with a.
Then, TRANSFUsION normalizes p; as follows:

exp (aT tanh( (z(Mi,)V) )

Zy:vlll | exp (aT tanh( (Z(M})V) T))

pi = softmax(tanh(e;)) =

where M’ denotes all modalities including K, and M’ = {K,V, A, T }

if considering all 3 supplementary modalities (vision, audio and
text). As the output, p = [p;] denotes the normalized importance of
both the trainable and pretrained embeddings in hy;g, and }}; pi = 1.

In practice, TRANSFusION adopts the basic MLP architecture
for generality and computational efficiency. It also supports other
fusion strategies such as graph-based fusion, which we leave it in
the future work.

4.3 Relation Attention

In addition to measuring the modality importance, TRANSFUSION
also adopts a dual attention mechanism to highlight important
relations (C2). For example, multiple relations can be used to infer
the tag “music_video” such as “has_person” and “BGM_style”,
and these relations contribute differently in the inference. In this
example, it can be seen that the importance of relations is relevant to
specific video modalities as discussed in Section 4.2.2, therefore, we
propose a dual attention mechanism to learn the relation weights
that is similar to the modality attention as follows:

exp (a; tanh((r;Vy)T))

%= ] . +1 ©)
28 exp (af tanh((x;V,) 7))
where V, € RAOxatt represents the shared linear transforma-

tion to the hidden space. g; indicates the importance of relation r;,
which impacts all tuples with the same relation {(h, r;, ¢)} in the
training process. The constant offset 1 in Equation (5) scales the
attention value g; and ensures that the “unimportant” tuples can be
used to derive KG embeddings in the same way without attention.

4.4 Model Training & Inference

TRANSFUSION casts the tag inference as the link prediction task (C3).
Given the predefined translation-based KG embedding approach,
TransFusIioN uses the fused video embedding following Section 4.2
as the basis to compute the representation of the relations and tags.
We use TransE as the base translation model (loss function given
in Equation (6)) and show this process in Algorithm 1.

L= V(y+dh+rt)—dh +rt)). (6)

where d indicates the distance metrics, such as L; or Ly. In Algo-
rithm 1, TRANSFuUsION first initializes the embedding of headers,
relations and tails (Line 1 - 6). As a header in G indicates either
a video or a tag, we follow Equation (3) to derive the fused video
embeddings, and initialize the tag embeddings following the base
KG embedding approach (TransE). In Line 7 - 13, TRANSFUSION
follows the given scoring function f; and loss L to update the learn-
able knowledge embedding segment 2(%) inhy;q as well as r and t.
In the inference stage (Line 16 - 19), give a video and relations of
interest, TRANSFUSION first uses f to compute the tail embedding
{, and then rank all tags based on the distance d(t, f) to select the
closest one as the inferred tag.

Generality It is worth noting that for the fused video embedding
hyig, TRANSFuUsION only updates the knowledge embedding seg-
ment (z(%) in Equation (3)) and the corresponding importance q.
Thus, the embeddings of tags t and relations r are learned with the
constraint to incorporate the fixed pretrained video embeddings
from supplementary modalities to minimize the loss. Because the
embedding from each modality is losslessly concatenated to rep-
resent a video hy;q and contributes independently to measure the
distance between h and t using r as the translation, we claim that
TrANSFUSION can be applied to other translation-based approaches
In practice, TRANSFUSION is general to be integrated into another
translation-based knowledge embedding approach by changing the
training process (Line 7 - 13 of Algorithm 1) with corresponding f;
and L. We empirically show experimental results using translation-
based models other than TransE in Section 5.3.



Algorithm 1 TRaNsFusioN-TransE

Input: Training set S = {(h,r,t)} in G, video embeddings eM
from supplementary modalities M, Squery, fr and loss L.
Output: h,r,tin G and inferred set of tags Stag.
1 Initialize z(q(), htag, 1, t and trainable parameters, a,b, V, W.
% pi= W forie [0,M], q;i = ﬁ forie [0,|R| - 1]
3: for M; € M do
& zZM) = §(eMD) . wM) 1)
- hyiq = [po - z(m,pl M) . pi - zM)]

> Project pretrained emb.
> Equation (1)
5 > Equation (3)
¢ loop training epochs > Base method, TransE
7 hh/[[h]], t —t/]]t]]

5 Spatch — SAMPLE(S, b), Tpare, < 0

9 for (h,r,t) € Spaten do

10: (W, t") « SAMPLE(S(h,r’t))

11: Thatch < Thatch U {((h 1, 1), (R, 1, t"))}

12: Update 2% 1t w.rtloss in base method » Equation (6)
13: Update W,b and V, a > Equation (4) and (5)
14 end loop

15: for (h,r) € Squery do

16: te—h+r

17: Stag < Stag U argmin, d(t, )

> Sample corrupted triples

> Tag inference

1s: return Stag.

5 EXPERIMENTS

We conduct experiments to evaluate TRANSFUsION from the fol-
lowing perspectives: Q1. How well does TRANSFUSION incorporate
multi-modal embedding information in inferring video tags? Q2.
Is TRANSFuUsION general enough to be applied to other translation-
based knowledge embedding approaches? Q3. How much extra
workload does TRANSFUSION bring to the basic knowledge embed-
ding methods, and how does it scale with the graph sizes? Q4. Can
TRrANsFUsION infer meaningful tags for given videos? We ran all
experiments on a machine with a 14-core 2.40GHz Intel Xeon CPU
with 256GB memory and Tesla P40 GPU. For reproducibility, we pro-
vide the source code: https://github.com/TencentARC/TransFusion.

5.1 Setup

TraNsFusioNn-variants. To testify the capability of TRansFusion
in integrating the pretrained video embeddings from V, A and 7~
modality, we conduct experiments using TRANSFUSION to integrate
the single, dual and triple modalities. Namely, they are TRANSFuU-
SION-V/A/T, TRANSFUs1ON-VA/VT/AT and TRANSFusioN-VAT. To
testify the generality, we adopt TransH, TransR, and TransD as the
base method and conduct implementation by following OpenKE [8].
Baselines. Due to the lack of baselines with the same goal (i.e., as-
signing the tag/label through the semantic relation), we adopt three
empirical embedding fusion approaches in KG settings. Namely,
they are: B1 application-concatenation, B2 application-summation,
and B3 multi-modal transformation. Specifically, B1 concatenates
video embeddings from the knowledge and supplementary modali-
ties to form hy;q, and use it to learn r and t following the predefined
fr. This approach can be seen as a special case of TRANSFUSION
without the modality- and relation-attention module. B2 is simi-
lar to B1 except that in the learning process, it sums the learned

knowledge embedding and multi-modal embeddings to get hy;q. B3
transforms the pretrained video embeddings from M only with the
modality attention to form hy;q4. It can be seen as another special
case of TRANsFusioN without having (%) in hyiq.

Training. For TRANSFUsION, we set the dimension of the knowl-
edge embedding segment d (%) = 64, which is the same for pro-
jected multi-modal embeddings from their original space. The dual
attention module in TRANSFusion adopts the multilayer perceptron
(MLP) with 1 hidden layer (dpjgden = 256) and outputs the scalar
attention value. The activation o is set to be ELU (Exponential Lin-
ear Unit). We use the default setup to achieve optimal performance
for base methods. To train the models, we use Adam optimizer for
100 epoches with learning rate = 10™* and batche size= 100. As
described in Section 4.4, we cast tag inference as the link prediction
task, so we evaluate the model performance using two widely-
use metrics in knowledge graph embedding: Mean Rank (MR) and
HITS@Ek, i.e., the proportion of correct tags ranked in the top k.

5.2 Tag Inference Performance

We first experiment the effectiveness of TRANSFUSION to integrate
video embeddings from 3 modalities M = {V, A, T} in tag in-
ference (Q1). Intuitively, V is more informative than A and 7 as
most tags are relevant to the objects. Therefore, our first step is
to verify this conjecture by integrating different combinations of
M and determine the optimal. Then, we run TRaANsSFusiON that
integrates the optimal modality combos on both Company datasets.
We divide the Company datasets into chunks of size 50K to train
the models and test on a separate chunk of 20K to illustrate the
capability of TRaNSFusION in handling data at different scales. For
consistency, we use TransE as the base model.

5.2.1 Impact of modalities. We run TRANSFUSION to integrate all
possible single, dual and triple supplementary modality combina-
tions from {V, A, T} over the first chunk from Company-200K.
Table 3 gives the results. It can be seen that when considering a sin-
gle modality, TRansFusioN with V performs the best in all metrics,
A performs second to the best, and 7 performs the worst. This is
as expected as most tags & relations are related to images or video
contents. The video title given by users is mixing: most of the titles
tend to describe the video content, but there are also less-relevant
words & phrases such as click-baits. Nevertheless, the title is still
more relevant to the 380 video classes comparing to the auditory
BGM. When integrating two modalities, we observe that the vari-
ants TRANSFuUsION-VA and -AT achieve better performance than
using a single modality. Particularly, TRANsSFusIoN-VA performs
the best with significant improvement in HITS. TRANSFUSION-VT

Table 3: Comparison of model performance in terms of Mean Rank
(MR) and HITS@k. Models combining the single, dual and triple
modality combos with the optimal performance are marked in bold.

Modalities | Method | MR | HITS@1 | HITS@10
TraNsFusION-V 1157.8392 0.2032 0.4688

Single TrANSFUSION-A 1250.9954 0.1785 0.4536
TraNsFusionN-T 1278.0450 0.1855 0.4547
TrANSFUSION-VA 1068.5327 0.2162 0.5435

Dual TRANSFUSION-VT 1212.9903 0.1672 0.4654
TraNSFUSION-AT 1068.8405 0.1895 0.5094

Triple | TransFusioN-VAT | 10383549 | 0.2089 |  0.5390
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Table 4: TRaNsFusioN (base model: TransE) performance in MeanRank (MR) and HITS@ 10. Model performing the best and second to the best
is marked in bold and x, resp.. Overall, all TRANSFUSION variants outperform the base model, and outperform the baselines in most cases,
especially when data scale increases. Among the variants, TRANSFus1oN-VAT performs the best with at least 9.59% improvement in HITS@ 10.

50K 100K 150K 200K 250K 300K

Data | Method MR |HITS@10| MR |HITS@10| MR |HITS@10| MR |HITS@10| MR |HITS@10| MR |HITS@10

1822.1693 0.3109
1661.7216 0.3167
1207.7767 0.4515
7458.4704 0.0006

1548.9553 0.3808

1668.7373 0.3387
1549.2969 0.3612
1212.2670 0.4839
8430.2834 0.0001

1443.0488 0.4191

TransE

Baseline1-VAT
Baseline2-VAT
Comp. | Baseline3-VAT
200K

2655.9757 0.1893
1696.3206 0.1302
1158.4259 0.2859
4636.4943 0.0003

2153.6474 0.3123

2179.3452 0.2647
1728.1139 0.2475
1213.9927 0.3957
6240.3623 0.0005

1622.3542 0.3444

TrANSFUSION-0

TraNSFusION-V 1157.8392 0.4688 1036.3844 0.4507 980.0499 0.5927 993.0402* 0.5990"
TraNsFUsION-VA | 1068.5327" | 0.5435 |1031.2422" | 0.4507" 1023.0957 0.5664 1078.1203 0.5872
TraNsFusionN-VAT | 1038.3549 | 0.5390" 999.2196 0.4916 988.6463* 0.5907* 952.4052 0.6038

2166.9205 0.2842
2745.0868 0.2625
2410.1631 0.3123
10837.2260 0.1343

2010.6706 0.3208
1824.2388 0.3429
1443.1374 0.4782
11082.0582 0.0001

2698.5626 0.2372
2076.5137 0.2434
1414.2717 0.3868
7948.9965 0.0004

2433.0914 0.2745
2008.5320 0.2953
1419.3751 0.4142
9304.8260 0.0006

TransE

Baseline1-VAT
Baseline2-VAT
Comp. | Baseline3-VAT

3750.2084 0.1443
2311.6552 0.0650
1431.2027 0.2154
4505.9492 0.0004

3095.4598 0.2148
2154.8289 0.1701
1378.2324 0.3235
5878.1708 0.0001

300K | TraNsFuUsION-0 3171.0726 0.2516 2514.6353 0.2996 2102.2660 0.3375 1961.0081 0.3390 1796.0561 0.3691 1738.3757 0.3636
TraNSFusION-V 2055.5578 0.2808% | 1341.5043* | 0.4547* |1249.8854* | 0.5423* |1213.8453%| 0.5653* 1412.4491 0.4851 1270.0986 0.5796
TraNsFusioN-VA | 1813.3729* 0.2682 1312.0373 0.4469 1463.1938 0.5079 1389.3730 0.5132 1239.1945" | 0.5022" |1102.1073*| 0.5977*
TRANSFUSION-VAT | 1942.8047 0.3829 1571.6603 0.4594 1218.2960 | 0.5534 1064.1529 | 0.5971 1115.2981 | 0.5150 1085.4599 | 0.6004

performs worse that TRANSFUSION-V, and it is likely due to the
miss-matching between the visual contents and their titles (such
as click-baits) in the data. For TRANSFUsION-VAT that integrates
all modalities, the performance is slightly worse than TransFu-
SION-VA in terms of HITS, this is likely due to the noise incurred
by the inconsistency between modalities, but still, we observe the
improved overall Mean Rank. Therefore, we use TRANSFUSION-V,
-VA and -VAT as representatives in the following experiments.

5.2.2 Tag Inference. In this experiment, we tune TRANSFUSION to
show the effectiveness of each component as the ablation study. We
use TRANSFuUsION without any modalities (we name this variant
as TRANSFUSION-0) to testify the edge attention module only. We
also use TRANSFUSION to integrate the optimal single, dual and
triple modality combinations shown in Section 5.2.1 to testify the
modality attention module. For all methods including the baselines,
we incrementally aggregate chunks of 50K as the training set.

As shown in Table 4, we first observe that all TRANSFusioN
variants outperform the base model TransE, including TRANSFU-
sIOoN-0 that only contains the edge attention module without any
pretrained video embeddings. This indicates the effectiveness of
the edge attention module in tag inference. Furthermore, we ob-
serve that TRANSFUSION that integrates any extra combination (sin-
gle, dual or triple) of modalities performs significantly better than
TRANSFUSION-0 and all the baselines with reduced MR and at least
9.59% improvement in HITS@10, which shows the effectiveness
of the modality attention module used in the fused video embed-
dings. In terms of the baselines, the application-concatenation B1
and summation B2 approach outperform the base model in some
cases, which shows the usefulness of these empirical approaches
in integrating the supplmentary modalities. The multi-modality
transformation, B3 performs badly, which is as expected as it can-
not learn the knowledge embedding segment that is necessary for
tag inference. Among the variants, TRANSFUSION-VAT performs
the best or second to the best in almost all cases, especially when
the scale of training data increases on both Company datasets. This
demonstrates the ability of the dual attention modules in fusing the
important multi-modal embedding and highlighting the important
relations, which is critical in dealing with massive multi-relational
data that contains noise or inconsistency between modalities.

5.3 Generality

In this section we evaluate the important design target of TRANS-
Fusion, generality in facilitating multi-modality fusion for existing
translation-based knowledge embedding approaches to perform tag
inference (Q2). We apply TRANSFUSION to integrate the pretrained
embeddings from M = {V, A, T} for 3 translation-based knowl-
edge embedding methods (i.e., TransH, TransR and TransD) that fall
into the same categorization as the extensions of TransE, and com-
pare the performance with their vanilla form on the Company-200K
dataset. As the reference, we use the result given by TransE from
Table 4. Since TRANSFUSION integrating all three modalities tend
to perform best (Section 5.2.2), we only report the result given by
TrANsFUs1oN-VAT for brevity. In addition, we employ the public
benchmark dataset FB15K237 and evaluate TRANSFuUsION on the
general task of link prediction. To keep consistent with tag inference
for videos, we only follow the “(h — t)” prediction manner.

Our first observation of Table 5 is that when comparing the
vanilla base methods only, TransH and TransD perform comparably
well and all 3 methods including TransR perform better than TransE,
which follows the finding in the precedent works. More importantly,
the base knowledge embedding methods that use TRANSFUSION to
integrate three modalities continuously outperform their vanilla
forms with reduced MR and 0.91% — 2.66% improvement in terms of
HITS@10. This is as expected because despite the fact that all these
base KG embedding approaches adopt different forms of scoring

Table 5: Performance (MR and HITS@k) of TRaNsFusION using dif-
ferent base methods on Company-200K. Base knowledge embedding
methods that use TRANSFUSION to integrate pretrained embeddings
across modalities continuously outperform their vanilla forms.

Base Method | Variants | MR | HITS@1 | HITS@10

TransE Vanilla 1668.7373 0.0793 0.3387
TRrANSFUsION-VAT 952.4052 0.2286 0.6038
TransH Vanilla 708.6168 0.3330 0.7860
TraNsFusioN-VAT 696.8757 0.3434 0.7951
TransR Vanilla 1061.2629 0.2705 0.6675
ans TransFusion-AT | 1019.8175 | 0.2955 0.6870
Vanilla 737.9201 0.3220 0.7794

TransD
TransFusion-AT 705.4973 0.3283 0.8060




Table 6: Comparison of model performance in MR and HITS@k on
FB15K237. Models with optimal performance are marked in bold.

Data | Method | MR | HITS@1 | HITS@10
TransE 208.3638 0.2064 0.4919
Baselinel-V 326.4840 0.1696 0.4452
Baseline2-V 250.1654 0.1790 0.4448
FB15K237 Baseline3-V 728.7685 0.1147 0.2682
TRANSFUSION-0 212.5140 0.2027 0.4908
TRANSFUSION-V 195.5638 0.2165 0.4942

functions or loss, they follow the similar transnational distance
manner to derive the embeddings, and thus can adopt TRANsFuU-
SION to integrate multi-modal information. We leave the generality
of TransFusIioN for KG approaches in the other category, semantic
matching as one direction of the future work. In Table 6, we ob-
serve that TRANSFusION-V with TransE as the base model achieves
improved performance on the benchmark dataset FB15K237. It can
be seen that the improvement is limited comparing to the Company
datasets, we blame it to the diversity of entities and the relatively
low quality of entity images crawled from the public websites. Be-
sides, the images could be biased as we only randomly select one to
derive the visual embedding. But still, we observe that by applying
TrANSFUsION to the base model TransE, the performance of link
prediction is improved, which further demonstrates its generality.

5.4 Scalability Analysis

To evaluate the scalability (Q3), we use TransE as the base model
and report the runtime of training TRANSFUSION variants to ob-
tain the fused video embeddings on both Company datasets versus
their numbers of edges. We also report the runtime of the base
model as reference, since it does not have extra computation and
should have the lowest runtime. Based on the visualization shown
in Figure 5, we observe that the runtime of TRANSFUSION variants
is longer than the vanilla TransE, and the runtime increases as the
more modalities are integrated. This is as expected as TRANSFusioNn
requires more computation for the dual attention modules. Never-
theless, TRANSFUSION variants with TransE as the base model still
scale linearly with the number of edges in the knowledge graphs,
which shows its scalability.

5.5 Tag Inference Case Study

Here we showcase the learned attention values of modalities and
important relations to answer Q4. Specifically, we report the aver-
aged attention score of each modality on Company-200K and the
top-5 relations with highest averaged scores in in Table 7 In Ta-
ble 8, we list the top-5 ranked tags for 3 randomly selected videos

500 —e— method-VAT 500 —s— method-VAT
=—e— method-VA —e— method-VA

400 method-V method-V/

null

nul
—— original

—e— original

50,000 75,000 100,000 125,000 150,000 175,000 200,000
Number of edges

(a) Company-200K

Runtime (s)
]

g
Runtime (s)
P
8

50,000 100,000 150,000 200,000 250,000 300,000
Number of edges

(b) Company-300K

Figure 5: TRANSFUSION variants runtime on two Company datasets.
TrANSFUSION scales linearly as the number of edges increase.

Table 7: TransFusioN learned modality importance (attention
scores) of Compan-200K as well as top-5 important relations.

Modality | Knowledge | Vision | Audio | Text
Score \ 0.4030 | 05340 | 00616 |  0.0015
Relation | manu_tag | category_3 | category_2 | category_1 | has_person
Score | 03787 | 02601 | 01283 | 0.09623 |  0.0482

outputted by both TransFusion and the base method following
the relation with the highest learned attention.

From Table 7, we observe that the knowledge embedding is
important with fairly high attention scores on the Company-200K
dataset. Besides, V is the most important, which corresponds to
the analysis in Section 5.2.1. Additionally, we observe that the most
important relation is manu_tag, which is reasonable as this relation
marks the manually-created tags given by the users. The relation
category_x denotes the pre-defined tags employed by the business
provider, higher values of * indicate finer granularity. An example
that corresponds to category_1/2/3 is Animal_Life, Pets and
Cats. Table 8 gives the inferred tags following the manu_tag rela-
tion. We asked 5 human annotators to watch the 3 videos and mark
the inferred tags that they think are relevant to the video content
in bold. It can be seen that TRANSFUSION provides high-quality
tags that are diverse and close to human interpretation. We also
provide the sampled key frames of these 3 videos in Section 7.2 of
the appendix to better understand the inferred tags.

Table 8: Inferred tags for 3 videos given by TRaANsFusioN and the
base model (TransE) on Company-200K.

Training tags ‘ Base Model ‘ TrANSFUSION-VAT

scientific facts, fun ex-
periments, technology,
electric shock, meat

animals, show, television
drama, comic, magic

education,  documentary,
scientific news, science &
technology, scientists

how to make, DIY,
recipe, tutorial, pizza

casual life, homemade,
cartoon, temporal work,
delicious food

delicious recipe, casual
life, eating & broadcasting,
street food, food selfies

international society,
COVID-19, India, disin-

education, news, car-
toon, selfies, life skills

scientific news, education,
vehicles, documentary, sci-

fection, top news ence & technology

6 CONCLUSION

In this work, we cast the problem of semantic video tag inference as
the semantic link prediction task in knowledge graph and described
a general deep learning solution, TRANSFusioN. We propose a par-
tially trainable embedding fusion model to integrate the pretrained
video embeddings from multiple modalities and adopts a modality
attention module to automatically learn their importance. We also
propose an edge attention module to highlight the important se-
mantic relations. Together, the dual attention modules answer the
question what and why in video tag inference. Extensive experi-
ments show the effectiveness of TRaANsFusION on two real-world
video datasets in the industry and a publicly-available knowledge
base with improvement in both MearRank and HITS. Our experi-
ments also show the linear scalability of TRANSFUsION, and provide
the analysis on the learned modality importance in the fused video
representation as well as the importance of semantic relations.
There are many possibilities for future directions of this work, such
as extending it to handle semantic KG embeding approaches, or
exploring advanced fusion strategies such as graph-based fusion.
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7 SUPPLEMENTARY MATERIALS
7.1 Multi-modal video embedding

In this section we provide the details of obtaining video embed-
dings from multiple modalities. Specifically, we trained two classi-
fication models for visual modality. The first model is a StNet [9]
with ResNet-50 [10] as backbone. We train the StNet on our large-
scale labeled data with 16 frames uniformly sampled from a video
as input. The second model consists of a pretrained EfficientNet-
B3 [33] and a NextVlad [18]. 32 frames are uniformly sampled from
a video and converted into visual frame-level features with pre-
trained EfficientNet-B3. We train the Nextvlad aggregating visual
frame-level features with our large-scale labeled data. Embeddings
extracted from two classification models are concatenated to form
the final visual embeddings. One classification model is trained for
auditory modality. Our model consists of a pretrained VGGish [11]
and a Nextvlad [18]. According to [11], we divide the background
audio of a video into non-overlapping 960 ms frames, and only
consider the first 32 frames. Log-mel spectrograms of 32 frames
are computed and presented to the pretrained VGGish to extract
auditory frame-level features. We train the Nextvlad aggregating
auditory frame-level features with our large-scale labeled data. One
classification model is trained for textual modality. Our model is a

LSTM-attention [45]. We tokenize the descriptive title of the video
with Jieba [32] and vectorize every word according to the word-
book [31]. We train the LSTM-attention with word vectors as input
on our large-scale labeled data.

7.2 Detailed Video Frames

Here we provide the titles and detailed key frames sampled from
the 3 videos in Section 5.5 to support the tags that are inferred by
TRANSFUSION. As shown in Figure 6, the key frames are sampled
consecutively over the fixed intervals (12s for video 1, 2s for video
2 and 3).

The titles are as follows:

e video 1: The electric shock experiment on fresh meat:
the consequence and discovery.

e video 2: Homemade “pizza” using ingredients at hand.

e video 3: A scene of street disinfection in India
amid Covid-19 global pandemic.

Among the tags inferred, we find that TRANSFUSION is capable
of inferring more diverse tags, such as “scientists” of video 1 and
“street food” of video 2, as well as tags that are relevant to the video
content, such as “vehicle” of video 3. Besides, all these tags are
closer to human interpretation of the video content.

(c) Sampled frames of video 3

Figure 6: Sampled frames of videos in the case study of Section 5.5. These key frames are sampled consecutively over the fixed intervals. For
video 1 (a), the interval is 12 seconds. For video 2 (b) and 3 (c), the interval is 2 seconds.
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