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Abstract—Machine learning on graph data has gained sig-
nificant interest because of its applicability to various domains
ranging from product recommendations to drug discovery. While
there is a rapid growth in the algorithmic community, the com-
puter architecture community has so far focused on a subset of
graph learning algorithms including Graph Convolution Network
(GCN), and a few others. In this paper, we study another,
more scalable, graph learning algorithm based on random walks,
which operates on dynamic input graphs and has attracted less
attention in the architecture community compared to GCN. We
propose high-performance CPU and GPU implementations of
two important graph learning tasks, that cover a broad class of
applications, using random walks on continuous-time dynamic
graphs: link prediction and node classification. We show that the
resulting workload exhibits distinct characteristics, measured in
terms of irregularity, core and memory utilization, and cache hit
rates, compared to graph traversals, deep learning, and GCN.
We further conduct an in-depth performance analysis focused on
both algorithm and hardware to guide future software optimiza-
tion and architecture exploration. The algorithm-focused study
presents a rich trade-off space between algorithmic performance
and runtime complexity to identify optimization opportunities.
We find an optimal hyperparameter setting that strikes balance
in this trade-off space. Using this setting, we also perform a
detailed microarchitectural characterization to analyze hardware
behavior of these applications and uncover execution bottlenecks,
which include high cache misses and dependency-related stalls.
The outcome of our study includes recommendations for further
performance optimization, and open-source implementations for
future investigation.

Index Terms—Characterization, CPU, dynamic graph, graph
learning, GPU, random walk, temporal graph, and word2vec.

I. INTRODUCTION

A graph1 is a ubiquitous data structure that models entities
and their interactions through the collections of nodes and
edges. It is widely employed in many domains ranging from
social media [1] to bioinformatics [2], [3]. More recently,
the process of learning representation of graph structured
data, i.e., graph representation learning, has gained significant
popularity in the algorithmic community [4]–[8]. This is due to
its superiority on multiple machine learning tasks in domains
ranging from social science [9], [10], computer vision [11],
physics, chemistry, and biology [12]–[15]. Following this algo-
rithmic evolution, several works in the architecture community
have analyzed its workload characteristics [16]–[18], and built
domain-specific hardware [19]–[21] for acceleration.

§Equal contribution.
1In this work, we use the term “graph” and “network” interchangeably.
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Figure 1: A high-level overview of our modeled pipeline that
takes a temporal graph as an input and learns the network dy-
namics to encode each node into a low-dimension embedding
space by using temporal random walk and word2vec. These
embeddings are then fed into a downstream machine learning
task such as link prediction or node classification.

The scope of these works, however, has so far been limited
to (a) static input graphs [22], and (b) a subset of graph
learning algorithms including Graph Convolution Network
(GCN) [7], and a few others [5], [23]. Nonetheless, most real-
word graphs are dynamic in nature, i.e., naturally evolving over
time by adding, deleting, or changing their nodes and edges.
Modeling these dynamic graphs as static would inevitably
incur information loss and performance deterioration of down-
stream predictive tasks. Moreover, while GCN has shown
state-of-the-art algorithmic performance on various prediction
tasks [22], it mostly works on static graphs and cannot model
the graph dynamics such as the sequential interactions between
nodes and temporal dependency between graph snapshots.
Besides, high computation and memory complexity of GCN
makes it difficult to scale to large-scale graphs [22].

In this paper, we investigate the behavior of a funda-
mentally new class of graph learning algorithms for temporal
graphs based on random walks, namely, temporal random
walk [6]. Temporal graphs are a category of dynamically
evolving networks with timestamp information associated with
each network interaction (i.e., temporal edge). Informally,
a temporal walk is defined as a sequence of temporally-
valid edges {(u, v1, t1), (v1, v2, t2), · · · , (vi−1, vi, ti)}, where
ti−1 ≤ ti. As an example, for the temporal graph shown in
Fig. 1, the walk {u, v, x} is temporally-valid as it naturally
indicates how the node u interacts with its neighbors with
respect to time, while {u, v, w} is invalid. Temporal random
walk is an important algorithm that underlies a wide range
of applications on graphs such as information cascading [24],



user behavior modeling [25]. It is also the foundation of many
follow-up research in the field of machine learning and repre-
sentation learning [26]–[28]. However, temporal random walk
has gained relatively less popularity in the architecture com-
munity so far. Additionally, this conceptually straightforward
algorithm could effectively model the temporally-valid node
interactions while being more scalable [4] to handle large-
scale graphs. Furthermore, we show that a workload resulting
from temporal random walks exhibits distinct characteristics
compared to traditional graph processing and GCN algorithms
(see §IV-D).

Fig. 1 shows an overview of a canonical pipeline based
on a prior algorithmic work [6]. We model high-performance
implementations of two variants of this pipeline for both the
CPU and GPU-based computing. The front-end of the pipeline
employs temporally-valid random walks and word2vec, a
technique from Natural Language Processing (NLP), to map
nodes into a low-dimension embedding space. This process
translates the similarity between nodes in the original network
into closeness in the embedding space. Then, these node
embeddings are fed into downstream machine learning tasks.
Specifically, this part models the two most widely-known
graph learning tasks, used in several applications, as follows.

• Link prediction. This task predicts the presence/absence
of an edge between a given pair of nodes. A concrete
application of this task is product recommendation from
the online sales websites such as Amazon.

• Node classification. This task assigns labels to nodes. Its
concrete application is identifying the professional role of
a user in social networks such as LinkedIn.

Based on this pipeline, we perform detailed two-step
performance characterization: (a) algorithm-focused, and (b)
hardware-focused. This reveals a rich design space and per-
formance acceleration opportunities as listed below.
(a) Accuracy-complexity trade-off. While high prediction
accuracy is desirable, it does not always come with high cost.
We use three hyperparameters to show this: (a) number of
random walks per node, (b) random walk length, and (c) em-
bedding space dimensionality. While increasing these values
monotonically increases workload memory consumption and
execution time, their benefit in accuracy are limited. While
prior works [4], [6], [29] often over-provision these values, we
find optimal parameters balancing accuracy and complexity.
(b.1) Instruction diversity. By analyzing dynamic instruction
types of individual kernels, we find the dominance of both
memory and compute instructions, indicating the necessity
to optimize both types of operations. This is particularly
interesting for temporal random walk that executes more
compute operations than traditional graph processing.
(b.2) Thread scalability. Despite irregularity, individual work-
load kernels can scale well using work stealing.
(b.3) Time Breakdown and CPU versus GPU. Classifier
training dominates the execution time of end-to-end workload;
accelerating training will yield high workload speedup. A
cross-platform workload comparison reveals that the GPU

outperforms CPU at large graph sizes.
(b.4) Execution Bottlenecks. GPU workload characterization
reveals that individual kernels exhibit diversity of bottlenecks
including cache misses, and compute and memory dependency.

Using these insights, we discuss strategies to optimize
this workload for future exploration using: algorithm, ML
framework, GEMM library, compiler, and hardware.

This is the first work introducing the random walk-based
learning pipeline on dynamic graphs for computer architecture
research. In summary, we make the following contributions:
• High-performance CPU and GPU implementations of

random walk-based temporal graph learning tasks.
• A detailed algorithic workload characterization presenting

a rich accuracy-complexity trade-off space.
• An in-depth hardware-focused performance characteriza-

tion uncovering future optimization opportunities.
• Open-source benchmark implementations and datasets for

the benefit of the broader research community at
https://github.com/talnish/iiswc21_rwalk.

II. RELATED WORK

A. Graph Representation Learning
Recently, graph representation learning or node embedding
has attracted massive research attention from both academia
and industry due to its success in downstream tasks like link
prediction and node classification. Inspired by the notion of
word proximity from NLP, early research in graph learning
focused mainly on leveraging the node proximity in a graph,
such as DeepWalk [4] and node2vec [29]. These works either
leverage first or second-order node proximity [30], or higher-
order (> 2) [31] to construct the global node representa-
tions. Additionally, there are works based on graph structural
properties. For example, struc2vec [14] defines similarity in
terms of degree sequences in node-centric subgraphs, and
role2vec [32] inductively learns structural similarity by in-
troducing attributed random walk atop relational operators.
Furthermore, other works attempt to incorporate external node
features with the graph structures [5], [7], [8]. For instance,
Graph Neural Network (GNN) [33], [34] and its variants
propose to aggregate node features in its dependent contexts
with arbitrary depth via propagation/diffusion. Representative
works include GCN [7], GraphSAGE [5], and GAT [8].
B. Temporal Network Modeling
Temporal network modeling has been widely studied in dy-
namic network analysis [35], [36]. Most existing works in
the field of machine learning and representation learning
empirically process the temporal graph as a sequence of
snapshots [28], [37], [38]. While the sequential order of
the snapshots models the evolution of temporal dynamics,
each individual snapshot is static and analyzed without the
temporal information. Streaming graph models can be seen as
an extreme case of the snapshot model, where the most recent
snapshot is a dynamically changing graph in real time [39],
[40]. Another direction that is orthogonal to snapshot-based
methods is based on sequential interactions between node pairs
in the graph. In this paper, we follow an earlier algorithmic

https://github.com/talnish/iiswc21_rwalk


Symbol Definition
G(V, E) a directed temporal network with |V| nodes and |E| edges
Gt(Vt, Et) a snapshot of the temporal network G at time t with |Vt|

nodes and |Et| temporal edges
A, At adjacency matrix for graph G and Gt, respectively
wu,v a temporal walk reaching out from u to v
f arbitrary base embedding method
d dimensionality of the embedding
Z |V| × d embedding matrix

Table I: Summary of notation.

work CTDNE [6], which proposes the notion of temporal
walks and leverages it to learn embeddings directly from the
stream of timestamped edges at the finest temporal granular-
ity. Other works [41], [42] propose to model the sequential
interaction as the point-process to predict the occurrence of
link over time.
C. Software Frameworks
Several software frameworks have been proposed to under-
stand performance implications of different graph learning al-
gorithms [43]–[47]. However, these frameworks mostly model
GCN algorithm and a few others [7]. This paper, on the other
hand, models random walk-based graph learning. Addition-
ally, there has been tremendous efforts for developing high-
performance implementations for traditional bulk-synchronous
graph applications on shared memory systems [48]–[60].
These frameworks implement abstractions for programming
graph applications as a library of high-level primitives or a
new programming language and compilers [61]–[63]. They
also combine optimizations with different iteration orders,
data structures, direction-optimization [63] etc. to improve
performance across different graph inputs and applications.
D. Hardware Proposals
Several prior works accelerate similar algorithms using novel
hardware designs. In the context of our paper, similar al-
gorithms include graph traversals, traditional deep learning,
and graph neural networks. A subset of prior works focus
on optimizing graph algorithms on the CPU using techniques
such as hardware prefetching [64]–[66]. Other works op-
timize graph algorithms on GPUs [67]–[69]. Additionally,
several accelerators have also been proposed to accelerate
graph traversals [70]–[73]. Both traditional deep learning and
graph neural networks have been extensively optimized using
hardware accelerators [19]–[21], [74]–[77]. However, random
walk based graph learning is not well studied in the context of
hardware accelerators. In §IV-D, we show that random walk-
based graph learning exhibits significantly different nature in
terms of its characteristics compared to aforementioned well-
studies application domains, motivating the need for our study.

III. PRELIMINARIES

This section provides the definitions of notions used in this
paper. The related symbols are listed in Table I.

Definition III.1 (Temporal Graph). A temporal graph G
consists of a set of nodes V and a set of temporal edges
E ⊆ V × V × R+, where t ∈ R+ represents the timestamp
of an edge (u, v, t) ∈ E .

At a high level, a collection of temporal edges {(u, v, t)}
forms a time-evolving network structure. For example, the
time-evolving email exchange network is constituted by in-
dividual contacts from user u to v at time t. Comparing
with static networks, the edge timestamps endorse in-depth
analysis of the network dynamics over time. A fundamental
data structure defined in temporal networks is a set of temporal
walks, i.e., a sequence of walks with respect to time [6], [25].

Definition III.2 (Temporal Walk). A temporal walk w from u
to v in the network G(V, E) is defined as a sequence of con-
nected edges wu,v = {(u, u1, t1), (u1, u2, t2), · · · (uk, v, tk)}
where ti < ti+1 for i = 1, 2, · · · , k.

A temporal walk indicates the reachability from the source
to destination node in a time-increasing order, which encapsu-
lates detailed information about network dynamics as well as
node characteristics. In the email exchange network example,
temporal walks denote the paths of a user reaching out to
another. These walks reflect how people get to know each
other and further expand their social networks over time. In
this process, detailed user activities such as reply, forward, etc.
are critical to user profiling and behavioral analysis.

In order to mathematically characterize such node properties
in the graph, the notion of graph representation learning has
been proposed and widely applied in practice. The high-
level idea is to map the nodes from the graph space to a
low-dimensional distance space (e.g., 128-d Euclidean space)
such that the computational complexity is reduced while the
similarity between nodes is preserved. As a result, the low-
dimensional representation can be applied to various machine
learning tasks such as link prediction, clustering, and node
classification. The formal definition of graph representation
learning is given as follows.

Definition III.3 (Graph Representation Learning). Given a
graph G(V, E), graph representation learning aims to learn a
function f : G(V, E) → Rd that maps nodes from the graph
to a low-dimensional space such that d � |V| and d � |E|
while preserving the notion of similarity between nodes.

Depending on specific approaches, the notion of similarity
can be defined as the proximity between nodes. Intuitively,
a node is more similar to its 1-hop neighbors than its 2-
hop neighbors and other distant nodes. Thus, nodes that share
common neighbors are embedded closely. On the other hand,
node similarity can be measured through the functionality or
structural role of a node in terms of its connection to its
neighbors. For example, the centers of two star-like subgraphs
are structurally similar to each other because they both are at
the center and thus behave like “hubs” that bridge other nodes.
In this work, we address the first type of node similarity in
graphs through temporal proximity.

IV. BACKGROUND AND MOTIVATION

In this section, we discuss the workload that performs link
prediction and node classification based on temporal random
walk on the graph. Specifically, the workload first generates
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Figure 2: Illustration of temporal the neighborhood and pos-
itive/negative edges. At timestamp 1, the random walker
reaches node v, then the set of nodes {x, y} forms the temporal
neighbors of node v.

the temporally-valid walks to characterize the structure of
the subgraph centering around each node, and then leverages
word2vec to encode it into the low-dimensional Euclidean
space as the node embeddings (§IV-A). Then, depending on
specific downstream tasks, the workload feeds the derived
node embeddings into the neural network architectures, and
trains the model to minimize the training loss (§IV-B). Finally,
training is performed. After discussing this background, we
briefly show how this workload is different from other standard
benchmarks (specifically GCN) to motivate our study.
A. Background: Temporal Random Walk based Representation

1) Temporal Random Walk

We follow an earlier algorithmic work, CTDNE [6], to
deploy the workload. Specifically, for a node v in graph G, our
workload leverages a set of temporally-valid walks originating
from v as the characteristic features to derive the embeddings.
As mentioned in Definition III.2, the temporally-valid walks
reflect the reachability of nodes following the graph structure
over time, which further reflects how a node v dynamically
interacts with its neighbors in the graph.

We leverage temporal random walk to collect the neighbor-
hood information for each node v ∈ G. In typical temporal
random walks, the nodes along the walks are chosen ran-
domly without a specific destination as long as the associated
timestamps are increasing. The transitional probability p(v|u)
is denoted as p(v|u) = 1

|Nu| , where Nu denotes the set of
nodes that are reachable from u following the connected edges.
Thus, as long as Nu for u ∈ V is computed efficiently, the
temporal walks can be collected efficiently. We detail the
implementation of Nu in §V-A. As an example shown in
Fig. 2, the random walker currently reaches node v following
the edge with timestamp 1. The next node it reaches would
be either node x or y with equal probability 0.5.

While a typical transitional probability marks an efficient
way to gather temporal walks, it fails to incorporate the
temporal continuity. Again, in the example shown in Fig. 2,
an edge from node v to x appears immediately after the edge
from the source node u to v. Compared to node y that appears
later in time, node x is more correlated with v.

In order to capture this notion of temporal continuity in
the graph dynamics, we follow Jin et al. [25] to model the
transition probability using the softmax function:

Pr[v|u] = exp (−τ(u, v)/r)∑
i∈Nu

exp (−τ(u, i)/r) , (1)

where τ(u, v) denotes the timestamp associated with the edge
u, v in the graph, and r is the normalization term that denotes
the total range of timespan.

With the transitional probability, our workload performs
|W| walks with lengths L per node, and collect them as
the features to describe each individual node in the graph
Wu = {v1, v2, · · · , vL}. Next, we describe the derivation of
node embeddings based on these walks.

2) Node Embedding

Given the set of temporal walks as features per node, our
workload then leverages the skip-gram model [6], [29] to learn
the node embeddings, where the objective function is

max
f

logPr(Wu|f(u)), (2)

where f(u) denotes the embedding for node u to optimize.
To solve Equation (2), we assume conditional independence
between nodes in Wu, generating a relaxed objective

Pr(Wu|f(u)) =
∏

v∈Wu

Pr(v|f(u)), (3)

where Pr denotes the softmax function (Eq. (1)). As the
output, our workload generates the embedding function f =
G → Rd for each node u ∈ G. For our implementation we
leverage the word2vec [78] framework.
B. Background: Downstream Tasks
Given the d-dimensional embedding vector per node, our
workload leverages the feed forward neural network architec-
ture (FNN) to perform two representative downstream tasks:
link prediction and (multi-class) node classification. The pa-
rameters of FNN are updated in the training set Str and tested
on the testing set Ste. The optimizers used for both tasks are
Stochastic Gradient Descent (SGD).

Depending on the tasks, the specific network architecture
and loss function adopted in our workload is given as follows.
Link Prediction. The goal of link prediction is to correctly
predict the existence of edges that occur later in time based
on the initial graph temporal connectivity. Our workload casts
link prediction as a classification task, so that the trained FNN
can distinguish edges in temporal graph G (positive edges)
from the non-existing ones (negative edges). An example is
shown in Fig. 2(b), where the goal is to predict the recent edge
e(v,y) in the toy graph. Our workload randomly samples two
early edges as the positive samples with the same number of
negative edges to train the neural network. In the testing stage,
the same amount of negative samples are generated as well.
The embedding for edge e(u,v) is derived by concatenating
the embedding of the source and destination nodes, i.e.,
f(e(u,v)) = [f(u), f(v)] following [31].

In this task, we deploy the 2-layer FNN, where the out-
put layer generates the probability of classification. We use
a binary cross-entropy loss function in the training stage
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(testing) The figure showcases unique behavior of modeled
application compared to other well-studied benchmarks.

L = −
∑2

k=1 pk log qk, where pk is the binary target ({0, 1})
and qk is the output probability of the neural net, i.e., q =
FNNLP(f(e+, f(e−))).
Node Classification. Multi-class classification is another
widely studied task, where the goal is to classify the multi-
class labels of nodes in the graph. In our workload, we cast the
multi-class classification task by feeding the node-wise embed-
dings as well as their labels to a 3-layer neural network. The
output layer has |C| neurons, each of which indicates the prob-
ability of the input node belonging to the class c ∈ C. The loss
function used is negative log likelihood loss L = − log(qc),
where qc is the output probability of a node belonging to the
ground-truth class c, i.e., q = FNNNC(f(u), l(u))), where l(u)
denotes the label for node u.
C. Motivation: GCN versus Random Walk-based Graph

Learning
In comparison with GCN that performs spectral convolutional
operation over a node’s neighbors up to a pre-defined number
of hops, temporally-valid random walk captures the sequential
interactions with respect to time. As a basic way to explore
the spatial property on temporal graphs, the presented al-
gorithm exploits global graph property that is beyond the
local node-centric subgraphs. Therefore, it is more powerful
in predictive tasks such as link prediction. Furthermore, the
presented algorithm works on feature-less graphs and uses
a single-integer vertex-identifier as a feature, whereas GCN
requires vertex-wise long feature vectors. Interestingly, there is
connection between GCN and random walk, for example, [79]
shows that random walk can be used to supplement GCN to
improve performance on static graphs. However, the difference
in these patterns result in different workload characterization
and performance optimization strategies on temporal graphs.
D. Motivation: Why Study this Workload?
Fig. 3 compares the hardware characteristics of a traditional
graph traversal (BFS), deep learning inference (VGG), graph
convolution network inference (GCN), and different workload
phases of random walk based graph learning application (RW-
P[1:4]) on a GPU. The figure shows GPU core utilization
(SM Util), L2 cache hit rate, DRAM bandwidth utilization,
load imbalance, and a measure of irregularity (ratio of number

of replayed to issued instructions) [80] normalized to BFS.
The datasets used for these tasks are the following: BFS—a
synthetic graph using graphgen utility from Rodinia [81]
with 16M nodes and 117M edges, VGG—ImageNet [82],
GCN—Reddit [5], and this work—a synthetic Erdős-Renyi
graph with 10M nodes and 200M edges.

The figure clearly shows that random walk based graph
learning pipeline yields unique characteristics compared to
other applications, which warrants its further investigation.
Specifically, the amount of irregularity (measured using a ratio
of the number of replayed to issued GPU instructions) is high,
which can be because of long-latency load instructions and/or
load/branch divergence. These characteristics further results in
low SM and DRAM bandwidth utilization.

V. BENCHMARK IMPLEMENTATION

This section presents implementation details of modeled graph
learning applications for both CPU and GPU. At a high-level,
this follows the flow presented in Fig. 1. We first present the
temporal random walk algorithm and a modified version of
word2vec that outperforms its open-source counterparts. Then,
we briefly discuss the data preparation and classifier steps.
A. Temporal Random Walk
This is the first step of modeled pipeline that takes a temporal
graph G as an input, and outputs temporally-valid random
walks starting from each node in the graph. We build this
kernel by extending a high-performance graph processing
framework — the GAP benchmark suite (GAPBS) [83].
We use the weighted graph structure WGraph for storing a
temporal network, which stores graph edges as an array of
structures (i.e., destination and weight). The weight field is re-
purposed to store timestamps with appropriate changes in the
data type. Furthermore, we add support to preserve multiple
edges between the same source and destination vertices. This is
important to preserve multiple temporally-distant interactions
between the same set of nodes.

This algorithm is shown in Algorithm 1. Its time complexity
is O(KN |V|M), where K is the number of random walks per
node, N is the length of each random walk, |V| is the total
number of vertices in the graph, and M is the max degree of
all the vertices in the graph. The factor of M comes from the
call to the G.sampleLatent function (line 12) that iterates
through all the neighbors of the vertex and compares each edge
against the timestamp. With any value of currVertex, this
would have to process edges equal to the maximum degree
in the graph. There are three nested loops: 1) the outer loop
to iterate over the walk number per node when performing
multiple random walks per node (line 4); 2) the middle loop
to iterate over all the vertices in the graph (line 5); and 3) the
inner loop to iterate over an individual step of a walk (line 8).
In our implementation, we parallelize the middle loop that
iterates over all vertices, based on an empirical finding that it
offers optimal performance compared to alternative settings.
B. Word2vec
This algorithm takes a series of temporally-valid random walks
as an input and outputs node embeddings. For the CPU,



Algorithm 1 Pseudocode for temporal random walk
1: Input: Graph G in CSR format, temporal walk length N, Number of walks per

vertex K
2: Output: Temporal walk output matrix of dimensions |G.V| × K × N, W
3: W ← new matrix [|G.V|][K ][N ]
4: for w : 0→ K do
5: par_for v : 0→ |G.V| do
6: currVertex ← v
7: currTime ← 0
8: for i : 0→ N do
9: if G.neighbors(currVertex) == 0 then

10: break
11: end if
12: currVertex , currTime ←

G.sampleLatent(currVertex , currTime)
13: W [v ][w ][i]← currVertex
14: end for
15: end par_for
16: end for
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Figure 4: The power-law distribution of temporal random
walk lengths on wiki-talk dataset (in linear and log scales).
Most walks are of short lengths, and the frequency of longer
walk length decreases exponentially. Other datasets also show
similar patterns.

we adopt an open-source implementation [84]. However, we
find that the available GPU implementations [85], [86] have
sub-optimal performance when applied to the graph learning
problem. This is because of their parallelism model. These
implementations parallelize word embedding updates within
each sentence, and processes different sentences sequentially.
While this might be optimal in NLP with long sentences, it
leads to poor parallelism in the graph learning context. This is
because, as shown in Fig. 4, the random walk lengths (i.e., the
number of walks that complete for a given length given the
timestamp constraints) are centered around 1 to 5. As the walk
length is analogous to sentence length, the word2vec input
constitutes a large number of short sentences. This causes
the GPU resources to be under-utilized and launches a large
number of GPU kernels, one launch for each sentence.

To improve this implementation, we propose the following
optimizations. First, we batch multiple sentences together, and
process sentences within a batch in parallel. This adds a
new possibility to read from a stale word embedding model,
potentially reducing accuracy, as we process multiple word
embedding updates concurrently. However, because the model
update is a sparse operation [4], concurrently updating word
embedding model does not result in an accuracy loss. On
the flip side, this technique greatly improves the GPU core
utilization. Empirically, Fig. 5 shows that the batch size of 16k
achieves a 124.2× speedup over no batching without accuracy
loss. The speedup is attributed to (a) improved GPU core
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Figure 5: Sensitivity of word2vec phase speedup and end-to-
end link prediction accuracy for different batched sentence
sizes on a GPU using wiki-talk dataset. Compared to a baseline
open-source implementation [85], [86], our batch implemen-
tation gains 124.2× speedup without a loss in accuracy at a
batch size of 16k sentences.
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Figure 6: Speedup of the word2vec phase on a GPU for dif-
ferent optimizations. Compared to baseline, batched sentences
(Batched), no cache line padding (No-pad), memory operation
coalescing (Coalesce), and parallel reduction (Par-red) result
in an end-to-end speedup of 220.5× on wiki-talk dataset.

utilization, (b) CPU-GPU data transfer cost amortization over
long computation, and (c) reduced kernel launch overhead.

Second, a prior implementation [86] uses cache line padding
to address false sharing at the private L1 caches. This heavily
under-utilizes cache lines as our embedding space dimension
is small (i.e., 8 as shown in §VII-A). To optimize cache
line utilization, we remove the cache line padding (No-pad)
and add support to bypass the L1 cache. Third, we assign
multiple GPU threads to process each embedding dimension in
a coalesced manner (Coalesced), and use parallel reduction for
accumulation (Par-red). With a small embedding dimension,
we also eliminate all the __syncthreads(), and rely on
the in-warp synchronization. Fig. 6 shows the benefit of each
of these optimizations, leading up to an end-to-end speedup
of 220.5× on the wiki-talk dataset without accuracy loss.
C. Data Preparation
Inputs to this step include the node embeddings from
word2vec, and a temporal edge list/a labeled node list for link
prediction/node classification. This step outputs datasets for
training (Str), validation (Svd), and testing (Ste).

Fig. 7 shows the data preparation algorithm for link pre-
diction. First, the input edges are sorted by their timestamps
( 1 ) and then 20% of the edges are chosen for testing from
the end of this list. The intuition behind sorting the edges is
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Figure 7: Data preparation step for link prediction.

to train the classifier on the past edges and test it on the future
edges. Excluding the testing edges, 60% and 20% of the total
edges are randomly sampled for training and validation ( 2 ),
respectively. Because these edges exist in the original input
network, they form positive edge sets with a label 1. Negative
sampling ( 3 ) is used to construct negative edges with a label
0. This is done by altering one/both vertex IDs of positive
edges so that the resulting edge is absent in the input graph.
After constructing these sets, edge features are computed by
concatenating node embeddings as described in §IV-B ( 4 ). A
similar mechanism is employed for node classification, where
labeled dataset precludes the need for negative sampling.
D. Classifier
Data obtained in the previous stage is fed into the classifier,
which goes through training and testing phases. We use an
FNN-based classifier as discussed in §IV-B.

VI. EXPERIMENTAL METHODOLOGY

This section details our experimental methodology. Specif-
ically, we talk about our hardware platforms, software
toolchain, and input graph datasets used for evaluation.
A. Hardware Platforms
We characterize modeled applications on two platforms —
CPU and GPU. We use a dual-socket server with two AMD
EPYCTM 7742 CPUs with 128 physical cores (256 SMT
threads). The aggregate Last Level Cache (LLC) size is
2×256MB. The size of main memory is 512GB. Additionally,
we use a discrete NVIDIA GPU with Ampere architecture.
B. Software Toolchain
We model our applications in C++ and compile them using
the g++ v7.5 compiler with -O3 optimization level for
the CPU. We compile CUDA programs using nvcc v11.2
with -O3 and -arch=sm_80 flags. For hardware profiling,
we use manual instrumentation and MICA Pintool [87] for
the CPU, and NVIDIA Nsight Compute [88] for the GPU.
We use dynamically scheduled OpenMP threads for CPU
parallelism. The downstream ML task is implemented using
the PyTorch-C++ API [89].
C. Input Datasets
We use both real-world and synthetic graphs for evaluation.
Because the publicly available real-world temporal datasets

are limited in size, we use them for algorithmic evaluation.
Table II shows the list of these datasets and their proper-
ties. For hardware study, we use large-scale synthetic graph
datasets generated using Python-based networkx library.
Specifically, we generate Erdős-Renyi random graphs, with
varying sizes and degrees, with synthetic timestamps.

VII. RESULTS AND ANALYSIS

Presented analysis is divided into two parts: (a) algorithm-
focused study, and (b) hardware-focused study. The former
presents the trade-off between prediction accuracy and runtime
performance. The latter focuses on understanding the workload
characteristics to find performance optimization opportunities.
A. Algorithmic Analysis
We study the effect of three important algorithmic parame-
ters: number of random walks per node, walk length, and
embedding space dimension. As shown in §V-A, runtime
complexity of the random walk algorithm is proportional
to the number of random walks per node and walk length.
Additionally, the runtime complexities of word2vec and clas-
sifier training/testing are dependent on the embedding space
dimension as it decides the feature vector length. Therefore,
increasing these parameter values will increase the execution
times of different kernels. Fig. 8a empirically confirms this
finding by showing the increase in random walk execution
time when increasing in the number of walks per node for the
stackoverflow dataset. A similar trend is observed for random
walk length and embedding space dimension. In general, we
find that the performance on link prediction tasks is better
than node classification. This is because that temporal random
walk exploits global graph property that is beyond the local
node-centric subgraphs. As the task of node classification re-
quires detailed information centric to specific nodes, temporal
random walk is not the optimal algorithm for it. Thus, as link
prediction requires more global information about the graph
connectivity, the performance is better. Next, we present the
parameter sensitivity on prediction accuracy of downstream
tasks.

Number of Random Walks Per Node. As shown in prior
works [4], [6], [29], the network is best sampled by performing
multiple random walks from the same node. This is because
one walk can only sample a vertex neighborhood via one of
its neighbors. Performing multiple walks from a node can
potentially sample a wider vertex neighborhood, enriching the
amount of information used for downstream learning tasks.
Fig. 8b shows the effect of performing multiple random walks
from a node on the prediction accuracy of link prediction and
node classification. The figure confirms that more walks from
the same node increases the prediction accuracy. Interestingly,
this improvement saturates after 8-10 walks. This is because
of the power-law nature of real-world graphs, i.e., most nodes
have few neighbors. In a majority of sparsely connected nodes,
performing 8-10 walks are enough to cover most neighbors.
Beyond this, there is limited value by performing more walks.

Random Walk Length. Length of the random walks in-
dicates the distance of sampled neighbor from the source.



Task Dataset Name #Nodes #Temporal Edges Description
Link prediction ia-email [90], [91] 87,274 1,148,072 Enron email network from Jan. 1998 until Feb. 2004
Link prediction wiki-talk [92]–[94] 1,140,149 7,833,140 User editing network of Wikipedia Talk pages
Link prediction stackoverflow [92], [93] 6,024,271 63,497,050 Stack exchange interaction network on Stack Overflow

Node classification dblp5 [95] 6,606 42,815 Co-author network from DBLP from 5 research areas
Node classification dblp3 [95] 4,257 23,540 Co-author network from DBLP from 3 research areas
Node classification brain [95], [96] 5,000 1,955,488 Connectivity network of tidy cubes of brain tissues

Table II: Real-world temporal networks used for algorithmic evaluation.

1 3 5 7 9 1113151719
Number of Walks per Node

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

N
or

m
al

iz
ed

 E
xe

c 
Ti

m
e

(a)

0 2 4 6 8 10 12 14 16 18 20
Number of Walks Per Node

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ic
ti

on
 A

cc
ur

ac
y

(b)

0 2 4 6 8 10 12 14 16 18 20
Random Walk Length

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ic
ti

on
 A

cc
ur

ac
y

(c)

21 23 25 27

Embedding Dimension (d)
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ic
ti

on
 A

cc
ur

ac
y

ia-email
wiki-talk
stackoverflow
dblp5
dblp3
brain

(d)

Figure 8: Accuracy-complexity trade-off. (a) Normalized execution time of the random walk kernel for different number of
walks per node, and (b-d) Accuracy of link prediction and node classification with respect to different parameter values.

For example, a random walk of length 5 will sample a 5-hop
neighbor from a source vertex. While multiple random walks
per node sample wide neighborhoods, larger random walk
length indicates the sampled neighborhood depth. Intuitively,
larger the length of random walk, deeper the network can be
sampled. Fig. 8c shows an increase in prediction accuracy with
an increase in the random walk length. This trend, however,
saturates after a walk length of 4-6, which can be described
using an earlier finding. Fig. 4 shows that the frequency of
random walks decreases with increased walk length. This
translates into marginal information gain with large walk
lengths and saturation in prediction accuracy.

Embedding Space Dimension. At a high level, a graph
learning task maps each node to an embedding space, where
the dimension of the embedding space defines complexity
of interactions that can be modeled. While prior algorithmic
works [4], [6], [29] use a fixed dimension size (d) of 128, we
analyze how this affects end-to-end accuracy. Fig. 8d shows
the effect of changing d on the prediction accuracy. Increasing
d from 1 to 8 results in gain in prediction accuracy as higher
dimensions can model more complex network interactions.
Interestingly, we find that an embedding space of dimension
8 is enough to make meaningful network predictions.

To summarize, there exists a rich trade-off space between
algorithmic performance and runtime complexity. While in-
creasing the value of aforementioned hyperparameters will
monotonically increase the execution time of different kernels,
their effect on prediction accuracy is limited. Based on our
empirical findings, we find the optimal values of number of
random walks per node, random walk length, and embedding
space dimension to be 10, 6, and 8, respectively.
B. Hardware Analysis
Next, we perform a detailed hardware analysis based on the
optimal parameter values found above. Using real-world and
synthetic graph datasets, we study the instruction diversity,
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Figure 9: Dynamic instruction breakdown of different kernels
involved in link prediction for ia-email dataset. The figure
shows that all kernels have a high number of both compute
and memory instructions.

scalability, time breakdown, and execution bottlenecks.
Instruction Diversity. Instruction diversity characterization

helps understanding the operation types present in a work-
load, which can be used to make design decisions building
specialized hardware. Fig. 9 shows the breakdown of dynamic
instruction types of individual kernels on a CPU for the link
prediction task on ia-email dataset. This is divided in terms of
memory, branch, compute (both arithmetic and floating point),
and others. The others category includes instructions for stack
usage, bitwise shifts, string operations, SIMD, etc.

The figure shows that both compute (36.6% on average)
and memory (30.4% on average) operations are dominant in
all kernels. Word2vec and classifier training/testing phases use
neural network-type computation, hence, this breakdown is not
surprising. However, a similar count of compute and memory
instructions for random walk is surprising as graph traversals
are known to have a low memory-to-compute operation ratio.
This distribution is attributed to the compute-intensive opera-
tions used in selecting a neighbor to walk as shown in Eq. (1).
As a takeaway, system designers should target both compute
and memory operations for optimizing all workload kernels.

Scaling Analysis. Fig. 10 shows the thread scaling behavior
of temporal random walk and word2vec kernels for stackover-
flow. Additionally, it shows GPU performance normalized to a
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Figure 10: CPU thread scaling analysis and its comparison
with GPU implementation for temporal random walk and
word2vec kernels on the stackoverflow dataset. The speedups
are normalized to a single-thread implementation. The figure
shows reasonable scaling trend.

rwalk word2vec training/epoch testing
|V|,|E| CPU GPU CPU GPU CPU GPU CPU GPU
10k,50k 0.0 1.2 0.3 0.4 0.3 0.7 0.1 0.0

10k,100k 0.0 1.2 0.3 0.3 0.6 0.8 0.4 0.1
10k,200k 0.0 1.2 0.3 0.4 0.8 1.2 0.2 0.2
100k,500k 0.1 1.2 0.7 0.4 2.4 2.3 0.5 0.5
100k,1M 0.1 1.2 0.6 0.4 4.1 3.4 1.2 0.8
100k,2M 0.1 1.1 0.6 0.4 5.1 8.0 2.2 1.6
1M,5M 0.9 1.4 2.7 1.3 13.7 15.5 6.0 4.2

1M,10M 1.2 1.4 3.4 1.4 32.5 28.3 7.8 7.0
1M,20M 1.8 1.4 3.2 1.6 62.2 58.6 20.7 14.7
10M,50M 12.2 4.0 25.4 20.0 147.7 147.1 56.3 44.2
10M,100M 14.2 4.0 27.3 22.1 315.8 303.9 133.0 87.8
10M,200M 18.7 4.2 36.8 27.4 695.2 668.5 233.1 206.9

Table III: Execution times of workload phases in seconds for
both CPU and GPU implementations. Cell colored in green
indicates a faster implementation between CPU and GPU.

serial CPU implementation. Using more than 64 threads does
not improve performance further as the thread creation/logic
logic dominates the computation cost. We do not show the
scaling of classifier training/testing as its Pytorch-based im-
plementation does not offer an explicit thread-scaling control2.

The figure shows that both kernels show a reasonable
thread scaling trend despite irregularity. For the random walk
kernel, the amount of work per thread is dependent on the
outgoing degree and timestamp distribution, which leads to
heavy load imbalance in a naïve implementation. To alleviate
this problem, we employ work stealing using dynamically
scheduled OpenMP threads. The GPU performs similar to 32
CPU threads. This is because of the CPU-GPU data transfer
time, and workload irregularity leading to branch divergence
and non-coalesced memory accesses. On the other hand, the
GPU implementation of word2vec performs much better than
CPU, despite the data transfer cost and irregularity. This is
because of the proposed optimizations discussed in §V-B.

Execution Time Breakdown. Using synthetic Erdős-Renyi
graphs of varying sizes and degrees, Table III shows the exe-
cution time breakdown of end-to-end workload. The training
and testing times are reported for link prediction classifier. A
similar trend follows for node classification. Note that Table III
shows per-epoch training time; the actual number of training

2PyTorch API uses workers for parallel data-loading, which spawns multi-
ple processes replicating the memory space.
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Figure 11: Characterization of stalls in different kernels on a
GPU. There is a diversity of stalls observed across kernels;
most stalls are caused by immediate constant cache (IMC)
misses, and compute and memory dependencies.

epochs is dependent on other hyperparameter values (e.g.,
batch size, learning rate, and rate decay).

There are two main insights here. First, the training time
dominate an end-to-end execution time of the workload. The
motivation of examining end-to-end workload time breakdown
is that in a real-world deployment, the graph evolves over
time. With this evolution, an entire pipeline needs to run to
account for new nodes/connections. This study shows that
optimizing classifier training would yield maximum benefits in
reducing the end-to-end workload time. Second, the execution
times of classifier training/testing increase monotonically with
the graph size. To understand this performance further, we
compare the testing time per instruction for modeled pipeline
and VGG. This comparison finds that per-instruction execution
time of random walk-based training is 37.4× slower than
VGG. We believe this is because of discrepancy in the matrix
sizes. For example, the largest layer size in VGG is 3136×
larger than the largest layer in the studied pipeline limiting
its potential for parallelism. Both applications are modeled
using PyTorch, which internally calls GEMM kernels. While
the performance of GEMM kernels are highly optimized for
popular network sizes (e.g., VGG), our study shows that there
is a significant room for improvement for other network sizes.

Cross-platform Performance Comparison. Table III also
compares the CPU and GPU performance. GPU implemen-
tations outperform its CPU counterpart at large graph sizes.
This is not surprising because CPU-GPU data transfer time
dominates computation time with small graphs. With large
graph sizes, this time is amortized over longer, more efficient
GPU computation, making it faster than the CPU. Addition-
ally, the workload irregularity hurts GPU performance causing
divergent thread pools and non-coalesced load operations.

Execution Bottlenecks. Finally, we perform a detailed mi-
croarchitectural analysis to characterize stall cycles of different
kernels. We perform this analysis on a large synthetic graph
with 10M nodes and 200M edges. We use the GPU for
this analysis because of its superior performance. Fig. 11
shows the characterization of stalls in terms of (from top to
bottom on the legend): 1) immediate constant cache (IMC)
misses, 2) compute dependencies (unresolved register depen-
dencies because of long fixed-latency compute instructions),
3) instruction cache misses, 4) scoreboard dependencies on



L1TEX operation, 5) execution pipe and MIO (memory I/O)
instruction queue busy, 6) memory/CTA (cooperative thread
array) barrier, 7) L1TEX instruction queue busy, and 8) others.

We observe two primary insights. First, each kernel exhibits
unique hardware characteristics and stall cycles. For exam-
ple, major causes of stalls in the random walk, word2vec,
and classifier training/testing are compute dependencies (i.e.,
54.1%), memory dependencies (i.e., 46.2%), and IMC cache
misses (i.e., 23.6/30.6%), respectively. As a result, no one
optimization strategy can significantly speed up all workload
phases, and kernel-wise investigation is necessary.

Second, on average, 65.5% of stall cycles across kernels
are caused by IMC cache misses, and memory and compute
dependencies. For the random walk kernel, the TEX I-cache
queuing delay and compute dependencies cause the majority
of the stall cycles. TEX I-cache stall is caused by the frequent
control flow divergence as a result of the workload imbalance
in sampling vertex neighborhoods. This sampling involves
several long fixed-latency compute instructions (see Eq. (1)),
causing compute dependencies. The memory dependency stall
is relatively low because a large portion of the work performed
for a single vertex exhibits spatial locality. The word2vec
kernel is mostly bounded by a significant portion of memory
dependencies. This is because this kernel fetches and updates
the model weights by sliding through a vertex window. The
vertex window being updated is dependent on the random walk
result, which contains a random set of vertex IDs, generating
irregular memory accesses. The training and testing phases
show a similar stall distribution, which is attributed to small
dimensions of our kernels [97], launching a small number
of warps. This is further corroborated by the SM utilization
for training/testing classifier being less than 10%. Therefore,
loading immediate data has low reuse, causing high stall rates.

VIII. DISCUSSION

This section discusses the employment of this framework to
conduct optimization studies and incorporate new tasks.
A. Optimization Opportunities
For algorithm designers. In this work, we leverage the
forward neural network for learning (§IV-B) as a basic model
for the workload analysis. It can be easily replaced by more
advanced neural network architectures such as ResNet [98]
or DenseNet [99]. Empirically, we observe at least ∼ 2%
accuracy improvement for link prediction using ResNet, and
we leave the detailed investigation for future work.
For PyTorch framework designers. As briefly discussed
in §VII-B, the PyTorch framework uses multi-processing to
employ multiple data loading workers. This significantly in-
creases the memory consumption of the workload and hurts
scalability. Multi-threading support with optimized memory
usage will significantly improve the classifier performance.
For GEMM library designers. As shown in §VII-B, training
time per instruction of the modeled pipeline is 37.4× slower
than VGG. This is owing to the differences in matrix sizes,
and low-level demand-based math library optimization model.
Optimizing the GEMM kernel performance for matrix sizes

1. #include </* std header files */>
2. #include <rwalk.h>
3. #include <word2vec.h>
4. #include <data_preproc.h>
5. #include <model.h>
6. #include <classifier.h>
7.
8. int main( args ) {
9. // Call graph reading API
10. compute_rwalk( ... );
11. word2vec( ... );
12. data_preproc( ... ); // Implement data_preproc.h
13. model_train( ... );  // Modify model.h, classifier.h
14. model_test( ... );   // Modify model.h, classifier.h
15. // Memory cleanup
16. return 0;
17. } 

Figure 12: Sample source code for incorporating new tasks.
used in our pipeline can improve the performance of classifier
training/testing by one-to-two orders of magnitude.
For compiler and hardware designers. Based on the exe-
cution stall characterization shown in §VII-B, compiler opti-
mization techniques such as operator fusion, loop interchange,
and data structure changes can alleviate kernel launch and
data transfer overheads. Additionally, compiler-based block-
ing, graph partitioning, and tiling [100] can improve memory
performance. Furthermore, employing domain-specific hard-
ware acceleration can significantly optimize this workload.
The word2vec and classifier phases are similar to traditional
deep-learning pipelines, hence, mapping them to an already
existing accelerator [74] would be sufficient. However, the ran-
dom walk kernel exhibits significantly different characteristics
and bottlenecks than traditional graph traversals (i.e., presence
of complicated compute primitives as shown in Eq. 1). This
calls for exploring a novel accelerator design for the random
walk kernel. This design must focus on optimizing both the
compute pipeline for long-latency arithmetic and floating point
operations, and the memory system to speed up data-dependent
loads for traversing sparse graph data structures (e.g., [64]).
B. Incorporating New Tasks
While this work presents two important graph learning tasks
used in several application domains, our framework can be
easily extended to realize other tasks. For example, if a user
wants to implement link property prediction (i.e., predicting
edge labels), Fig. 12 shows the modification of main source
file that calls different pipeline stages. A user can re-purpose
random walk and word2vec implementations by simply calling
functions shown in lines 11 and 12. As the step of preparing
classifier data is unique to each task, a user has to implement
an appropriate data preparation step. Finally, a classifier con-
taining neural network model, training, and testing loops can
be incorporated by modifying already implemented modules
in our framework.

IX. CONCLUSION

This paper presented high-performance implementations of
two important graph learning tasks on continuous-time dy-
namic networks, optimized individually to run both on the
CPU and GPU. We used a scalable random walk-based
algorithm for learning node embeddings of a graph. Based
on these implementations, we conducted an in-depth perfor-



mance analysis from both algorithmic and hardware fronts.
The algorithm-focused study presented a rich trade-off space
between prediction accuracy and runtime complexity. The
hardware-focused investigation analyzed different phases of
the application to find their instruction type diversity, thread
scalability, execution time breakdown, and execution bottle-
necks. Based on these insights, we made recommendations
to further optimize the workload performance for designers
of algorithms, ML frameworks, GEMM library, compiler,
and hardware. The proposed implementations will be open-
sourced to the broader research community to encourage
further investigation.
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