Deep Transfer Learning for Multi-source Entity
Linkage via Domain Adaptation

Di Jin!, Bunyamin Sisman’, Hao Wei’, Xin Luna Dong?, and Danai Koutra'

'University of Michigan, Ann Arbor
2Product Graph, Amazon Research
{dijin,dkoutra}@umich.edu {bunyamis,wehao,lunadong}@amazon.com

Abstract

Multi-source entity linkage focuses on integrating knowledge from multiple sources
by linking the records that represent the same real world entity. Existing pipelines
mainly depend on supervised learning that requires abundant amounts of train-
ing data. However, collecting well-labeled training data from many sources is
expensive and the trained models can easily overfit to specific data sources and fail
to generalize to new sources due to significant differences in data/label distribu-
tions. To address these challenges, we present ADAMEL, a deep transfer learning
framework that learns generic high-level knowledge to perform multi-source entity
linkage. ADAMEL models attribute importance through an attribute-level self-
attention mechanism, and leverages the massive unlabeled data from new data
sources through domain adaptation to make it generic and data-source agnostic. Ex-
tensive experiments show that our framework achieves state-of-the-art results with
2.67% — 11.24% improvements over methods based on supervised learning. Also,
it is more stable in handling different data sources with at least 3x less runtime.

1 Introduction

Entity linkage (EL), also known as entity resolution, entity matching, is a fundamental task in
data mining, database, and knowledge integration with wide applications, including deduplication,
data cleaning, user stitching, and more. The key idea is to identify records across different data
sources (e.g., databases, websites, knowledge base, etc.) that represent the same real-world entity.
As newly-generated data surge over time, accurately consolidating the same entities across semi-
structured web sources becomes increasingly important, especially in areas such as knowledge base
establishment [7, 12] and personalization [15]. Methods for solving the entity linkage problem
across data sources include rule reasoning [9, 28], computation of similarity between attributes or
schemas [2], and active learning [27]. In particular, recent deep learning approaches that are based
on heterogeneous schema matching or word matching [24, 25, 22] have been widely stuied. Their
promising performance mainly comes from the sophisticated word-level operations such as RNN
and Attention [24, 11] to represent token sequences under attributes as the summarization, or the
usage of pretrained language models [19] to better learn the word semantics. However, all the above
approaches implicitly assume that the “matching/non-matching” info for training records is available
(e.g., the music records in source 1 and source 2 shown in the two blue tables of Fig. 1) and can be
queried through the learning process, which does not always hold in practice. In real-world knowledge
integration scenarios, new data come incrementally and can be well-labeled (e.g., through manual
confirmation) or unlabeled. As the example shown in Fig. 1, a model trained on the high-quality
labeled data (blue tables) would fail to generalize to the new data sources (red tables) with missing
and different attribute values (i.e., “Artist”), as well as new or rarely-seen attributes (i.e., “Gender”).

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

’
i

|]

' — - (well-labeled)
! WakeMeUp Tim Bergling Male <*> All Falls Down Alan Walker N/A

|

'

|

|

]

|

—

]
|
i

Trainin 1 All sources

& River Deep ' (unlabeled)
model o |
Mountain High !

e Sowreel___________gm o ________Source2 ________ '

Importance Importance
Adaptation Adaptation

? Source 3

Neil Diamond N/A 41» River Deep Neil Diamond ~ N/A

Hello AA Female guup Hello A W. Male
River Deep N. D. Male P Riverman N. D. Male Source 17
Source 3 Source 4

Figure 1: Our proposed framework, ADAMEL automatically learns the attribute importance that adapts to the
massive unlabeled data from different sources (i.e., red tables) during training, and then uses it as the transferable
knowledge to perform matching.

Motivated by real-world knowledge integration settings, we consider three key challenges: (C1)
missing attribute values from unseen data sources; (C2) new attributes from unseen data sources; and
(C3) different value distribution in unseen data sources. Based on these challenges, we seek to tackle
the following MEL (multi-source entity linkage) problem: Given labeled data from a limited set
of sources, what knowledge can be learned and how can it be transferred to automatically handle
multiple unseen data sources with different value distribution, missing values and new attributes?

To solve this task, we propose ADAMEL, a transfer learning framework that leverages both the
labeled and massive unlabeled data to train the model for multi-source entity linkage while addressing
the aforementioned challenges (C1-C3). We define the attribute importance in entity linkage as
the high-level transferable knowledge and automatically learn it through a proposed attribute-level
attention mechanism (what to transfer). More importantly, ADAMEL adopts domain adaptation
(DA) to jointly update the attention scores for attributes in both the seen and unseen data as the basis
for entity linkage (how to handle multiple sources). Unlike most transfer learning frameworks that
fine-tune the pretrained models to handle new data, ADAMEL uses well-labeled data sampled from
limited sources as well as unlabeled data sampled from a wide range of sources to jointly update
the attribute importance during training. It is worth noting that ADAMEL highlights the role of
“important” entity attributes in determining entity matching across data sources, and assumes that the
similarity/dissimilarity of important attributes has higher impacts than unimportant attributes. While
the widely-adopted NLP-based attribute summarization in existing works could accurately capture
the word-level semantics using pretrained language models or domain knowledge, we claim that the
impacts of word-level similarity/dissimilarity under some attributes are limited and even harmful in
model performance if those attributes are not important. Experimental results show that the MEL
performance is comparable and better by using fewer important attributes only, and ADAMEL could
achieve consistency in terms of performance and reduces expensive model retraining time.

2 Related Work

Entity Linkage (EL). Early works in EL [12, 21, 6] are based on the similarity between entity
attributes [9, 6] via resolving the data conflicts [7], linking relevant attributes via semantic matching
or rule reasoning [28]. Blocking or hashing are normally applied to merge the candidate entities
[4]. The major drawback is the dependence on prior knowledge as the useful attributes are normally
manually-selected.Recently, EL models based on deep neural networks [24, 16] have been widely
studied due to their capability in automatically deriving latent features and promising results in fields
such as CV and NLP [1, 23, 10]. For example, DeepER [16] and DeepMatcher [24] propose to
leverage RNN to compose the pre-trained word embeddings of tokens within all attribute values,
and use them as features to conduct EL. There are also works that formulate entity linkage across
different data sources as heterogeneous entity matching [22, 11, 25].

Transfer Learning. In transfer learning, models are trained on a source domain and applied to
a related target domain to handle the same or a different task [26, 13]. The specific transferable
knowledge that bridges the source and target domain has significant impact to model performance [33].
A popular approach is to adapt the pre-trained model for the new task through fine-tuning [19], or by
adding new functions to tasks such as object detection [14]. A recent work in EL, Auto-EM [34] falls
into this category, but it only applies to single data source. A specific type of transductive transfer
learning that is most relevant to our work is known as Domain Adaptation, where the source and
target domain share the same feature space with different distributions [29], and machine learning
models are trained on the same task [32]. Many well-designed algorithms propose to map the original
feature spaces to a shared latent feature space between domains [8, 3].

3 Preliminaries

Problem Definition An entity record is collected from a specific data source such as a website or a
database, and is identified by its attributes. For example, a song record r = (“Sweet Caroline”, “Neil
Diamond”, “USA”) is specified by the attributes A = {title, artist, country}. In this paper,
we conduct analysis based on entity pairs (r, ') instead of individual entity records. We now define
the MEL problem, which is related to the heterogeneous entity matching® [25, 11]. Symbols and
notions used in this paper are listed in Table 3 of Section 7.1 in the appendix.

Problem 1 (MEL: Multi-source Entity Linkage) Given the labeled entity pairs {(r, ") }seen from
a limited set of data sources S where each entity record r is associated with attributes A, and
previously unseen pairs {(1,7") }unseen from the new data sources S’ with attributes A’, Multi-
source entity linkage aims to predict if {(v, 1) }unseen represents the same real-world entity, where
(7 Vunseen € (S X SYU(S' X S), |S'| > |S| (assuming that there are more unseen entities than
seen). Since S # S', certain attributes in A’ could be missing (C1), new (C2), or associated with
different values (C3), and thus A # A'.

In Problem 1, the linkage is conducted on entity pairs sampled from a wider range of data sources
than the labeled data in model training (ten or hundred orders of magnitude more in reality). Plus, the
new data sources contain a rarely seen or unseen attribute (“Gender”). This issue can be addressed
by the aligned ontology such as A U A’ with blank “dummy” attributes. Based on our definition, a
solution to MEL should be able to (G1) make use of the massive unlabeled data from new sources,
and (G2) further improve the linkage performance by leveraging a few labeled record pairs from new
sources if available (i.e., an additional support set). At a high level, we introduce an effective domain
adaptation-based solution. Before presenting our framework, we discuss the necessary terminology.

Definition 1 (Source & target domain) The source domain Dg refers to a set of labeled entity pairs
{(r,r")} sampled from limited data sources that the model is trained on. The target domain Dt
refers to the set of unlabeled pairs where each pair has at least one entity sampled from the data
sources unseen in Dg.

For clarity, we use the superscript * to indicate the data source(s) of a record/domain. Following
Definition 1, the seen and unseen set of data sources in Problem 1 are formulated as S = D and
S’ = D’. An entity pair from Dy could either contain one entity sampled from the seen data sources
in D3 and the other one from the unseen, i.e., (r,r)r € D X Dr, or it has both entities sampled
from the completely unseen data sources, i.e., (r,7')r € D} X Di.. In both cases, achieving G1
requires data in Dr. To achieve G2, we introduce the support set, which corresponds to the real-world
scenario that a few newly incoming entity pairs are well-labeled (e.g., on-the-fly human annotation).

Definition 2 (Support set) The support set Sy refers to a small set of labeled entity pairs sampled
from the same set of data sources as Dr.. It has at least one data source that is not contained in Dy.

4 Proposed framework
4.1 Formulation

In transfer learning, the generic transferable knowledge K is key to adapt the model trained on the
source domain to the target domain. We denote our domain adaptation solution to MEL as the
following binary classification task.

y:M(Ka (Tarl)) € {071} (1)

where M represents the deep model that generates the binary prediction y for the entity pair (r,7’) €
Dr, where 1 and 0 indicate the matching and non-matching, respectively. As mentioned in Problem
Statement, the key difference between Dg and Dr lies in the difference in data sources, therefore
K should be data-source agnostic to address (C1)-(C3). To ensure D shares the same feature
space as Dg (the prerequisite for domain adaptation), ADAMEL first aligns the ontology so that
data sources D and D7 share the same attribute schema, but the attribute values (word tokens)

“In MEL, the entities come from different data sources, and thus there may be new or missing attributes.
On the other hand, in heterogeneous entity matching, the schemas are heterogeneous (i.e., they have different
attributes, which may not be aligned) and the entities do not necessarily come from different data sources.

can vary significantly. By doing so, entity records reveal the following properties that correspond
to the aforementioned challenges: (C1) entity records in the source/target domain contain missing
values, i.e., r[A] =" (empty string) for r € Dg U Dr, (C2) certain attribute values are completely
missing for records in Dg, i.e., T[Aj] = for r € Dg, but not in D, and (C3) rich texts under some
attributes in Dg but sparse in D or vice versa.

4.2 Feature Representation

Given entity pairs (r, ') with the aligned attributes A, ADAMEL first parses each attribute A into
2 contrastive relational features, which are word tokens shared by r and 7/, and word tokens that
only appear in one record but not the other. This is because the similarity or uniqueness of attribute
between r and 7’ gives independent and complementary evidence for linkage [31]. Taking the
attribute A =“Gender” as an example, a pair of music recordings sharing artist gender is a weak
identifier for matching but it is strong for non-matching. In addition, looking into both the similarity
and uniqueness in attribute A between entities would enrich the feature space and facilitate training
the deep model. We describe the 2 contrastive relational features of an attribute A as follows.

sim(A) = {w| for w € {r[A]Nr'[A]}}, uni(A) = {w| for w € {r[AJur’[A]—r[A]Nr'[A]}} (2)

where w is the word token in attribute r[A]. For clarity, we uniformly denote shared/unique tokens
sim(A)/uni(A) as “features” that contribute independently to entity linkage. Clearly, there are
F = 2| A| features for a pair of entities. To summarize the feature representation, ADAMEL simply
sums up the embeddings of the cropped word tokens [17, 30, 24] without using more sophisticated
operations. The embeddings of word tokens can be obtained using any pretraining language models
such as BERT [19] or Fasttext [17]. For clarity, we use ¢ as the index of entity pairs and j as the
index of features. Thus, the token embedding vector of an entity pair (r, ') is denoted as:

h =[hy,hy,--- ,hp] = [emb(sim(4,)),emb(uni(A;))] forj=1,--- ,|A] 3)

Thus, we have F' = 2| A| textual embedding features for an entity pair (r,7’). ADAMEL leverages
per-feature non-linear affine transformation to project word embeddings for latent feature x:

x=[0(V,h;+bj)forj=1,---, F 4)

where Vf *D and bf are the learnable weight matrix and bias vector, respectively. o denotes the non-

linear activation function (e.g., Relu). Thus, Equation (1) can be rewritten as: y = M (K, x) € {0, 1}.
Next we discuss how ADAMEL learns feature importance ' as the transferable knowledge K.

4.3 Feature Attention Embedding
Given a pair of entities denoted through F' features, ADAMEL defines the attention coefficient
of feature j as: e; = a(Wx;), where x; is the H-dimensional representation of latent feature j,

WH'XH i a shared linear transformation, and a represents the attention mechanism RH R,asa
single-layer neural network (parameterized with a). ADAMEL allows each feature to attend to the
label y independently and computes coefficients using the softmax function such that the normalized
scores are comparable across all features. Equation (5) computes the attention score of feature j:

exp (al tanh (Wx;))
25:1 exp (aT tanh (Wxy))

(&)

g(x;) = softmax;(e;) =

Note that Equation (5) only generates the scalar attention score of feature j for an input vector x.
To compute the scores of all features, we introduce the attention embedding function f that learns
attention scores of all ' features as follows.

f(X) = f([xlvx% e 7XFD - [g(xl)ag(XQ)v' t 7g(XF)] (6)

In Equation (6), all features share the same W and a to compute the attention scores. We denote
f(x); = g(x;), and 25:1 f(x); = 1. ADAMEL takes the generated feature importance vector

f(x) as the transferable knowledge K for the entity pair (r,7’), i.e., K = f(x). In the learning
process, ADAMEL feeds the feature representation coupled with its attention score to a 2-layer

"In this paper, we compute the feature attention as the transferable knowledge, feature importance.

feed-forward neural network © to perform the binary classification task: § = O(o(f(x) ©® x)) =
O([o(g(x1)-%x1), - ,0(9(xF) - xF)]), where © denotes the element-wise multiplication, o denotes
the non-linear activation (e.g., Relu) and ¢ denotes the inference score for matching. ADAMEL uses
the same attention mechanism to handle all records in the training and leverages the cross-entropy
loss to update the shared parameters W, a, as well as the learnable V, b through back-propagation.
The loss 1S Lpgse = —% Zf\il yi log ; + (1 — y;) log(1 — §;), where y; denotes the label {0,1}.
To ensure that all learnable parameters can be updated correctly, ADAMEL initializes the missing
attribute values (incurred by challenge C1, C2) with a fixed normalized non-zero vector. We name
this solution ADAMEL-base as it learns f through the labeled data in Dg. The attribute importance
learned under the supervision of labeled data in Dg will be carried over to the unseen data sources
and may not generalize well as there is always new data from seen or unseen sources with different
distributions (C3) in MEL. Next we discuss how ADAMEL adopts D to alleviate this issue and
make /C data-source agnostic, and describes three variants that leverage domain adaptation to handle
different learning scenarios.

4.4 Domain Adaptation-based Variants

Unsupervised Domain Adaptation Our first idea is to adjust the learned attribute importance
according to new distribution of unlabeled data. In Equation (6), the attention embedding function
f contains the shared attention mechanism a parameterized by weight vector a and the shared
transformation matrix W. It only takes the feature embeddings x as input to compute the attention
scores. Since W and a are shared across the input data, the attention score vector f(x) can be
seen as projecting the input feature embeddings x into a hyper-plane that is parameterized by
W and a. Without introducing extra information such as entity pair labeling, we can project
data from Dr into the same space as Dg, and it holds as long as the ontology of the unlabeled
data aligns with the labeled data, i.e., identical attribute schema between Dg and Dr. Therefore,
ADAMEL uses the KL divergence to measure the attention score distribution difference between
the source and target domain as the regularization term to train the model. The loss is defined as
Lin = (1 — X)Lpase + ALtarger, Where X is the hyperparameter that balances between Ly,se and
Liarger. A also measures the amount of adaptation to the target domain Dr. Liyge iS given as

Luarger = KL(f(x), f(x')), where f(x'); = ﬁ >« epy J(X}); represents the attention score for

feature j averaged over the unlabeled data. x and x’ denote the feature vector in the source and
target domain, respectively, and f(x;); denotes the importance of the j-th feature in the i-th entity
pair. In practice, ADAMEL adopts batch learning to improve the training efficiency, i.e., minimizing
the loss per batch instead of iterating through all records in the data. The unlabeled data could also
come in batches, which makes f(x’) be the attention vector averaged over the batched unlabeled
data instead of all in the target domain. By default, the batches are sampled randomly. We name this
solution AdaMEL-zero as it is based on unsupervised domain adaption without using labeled data in
Dr and performs linkage in the zero-shot manner. The detailed architecture and algorithm is given in
Section 7.2 of the Appendix.

Semi-supervised Domain Adaptation In practice, a small number of labels may be available for the
entity pairs coming from the target domain (e.g., through on-the-fly human annotation). Entity pairs
in this support set Sy are sampled from the wide range of data sources and provide clues about the
data characteristics of the target domain. To leverage this set of labeled data (G2), ADAMEL updates
the attention embedding function f under the supervision of Sy so that the projected feature attention
vectors of entity pairs in Dg could match to those in Sg;. For this purpose, ADAMEL computes the
centroid of the positive entity pairs in Dg as: c%s = |D$ >t ot f(x;). The centroid of the
sl (x7,y;)€Ds

negative pairs can be computed in a similar way with negative samples. Intuitively, entity pairs from
the data sources unseen in Dg are more important in adaptation than those from the seen sources,
and should be highlighted. ADAMEL measures such difference through the Euclidean-distance
between f(x) and cpy, as the deviating attention vectors are more likely to correspond to unseen
data sources in the projected space. In the loss function shown in Equation (7), we compare the
distance d(f(x), cp,) with the “mean distance to cluster centroids” to give higher weights to entity
pairs in Sy that are deviating from seen data sources.

+) ot -\ o=
Lo = 3 W1 B0) 5 5 WD C0) oy)

— —
yi=1 dDS ;=0 st

where d denotes the Euclidean distance, d*/~ represents the mean distance for all positive/negative
pairs in Dy to the corresponding centroid. Thus, by integrating Ly, pport With Ly, the updated loss
of ADAMEL in the supervised setting is denoted as Ly = Lpase + ¢ Luppor» Where ¢ € (0, 1] is a
hyperparameter that controls the impact of the labeled support set. The training process updates not
only parameters in the neural network © for better classification performance, but also the attention
embedding function f so that the projected positive and negative feature attentions are matched closer.
In this process, feature importance from the new data sources unseen in D can be incorporated to

update the centroids ¢/~ in the supervised manner. We name this solution AdaMEL-few as it uses
a few labeled data in Dy, and depicts the process in Algorithm 2.

Hybrid Model We further propose a hybrid model that incorporates both the labeled support set
and the unlabeled data from Dy in the training process. It can be seen as the composition of
AdaMEL-zero and AdaMEL-few, and uses the 108S Liyger and Lgyppore defined in Equation (7) as
Ligbria = (1 — A)Liase + ALtarget + @ Lupport. We name this hybrid solution as AdaMEL-hyb that
describes the algorithm in Algorithm 3.

S Experiments
5.1 Experimental Setup

Data We use both the public dataset from the Data Integration to Knowledge Graphs (DI2KG)
challenge [5] and two real-world datasets in different scales from Amazon. Both the public and
private datasets are in the tabular form and the entities are associated with textual features. We provide
the dataset statistics with source info in Table 1, and the description in Section 7.4 of the Appendix.
Comparing with the public benchmark datasets [24], the above datasets are collected from larger
ranges of real-world sources with heterogeneous schemas, which makes them more challenging.

Baselines & Configuration We compare ADAMEL with the state-of-the-art deep learning baselines,
most of them are proposed to handle heterogeneous entity linkage, namely: DeepMatcher [24], Entity-
Matcher [11], Ditto [22] and CorDel [31]. These baselines are reported to achieve the state-of-the-art
EL performance and outperform methods such as Seq2SeqMatcher [25] and DeepMatcher+ [18].
In our experiments, we follow the original paper and fine-tune the baseline approaches for optimal
performance (see detailed configuration in Section 7.4.). To evaluate the effectiveness of our proposed
framework, we configure ADAMEL with consistent setup as the baselines. The dimension of the
projected embeddings per feature is H = 64, the hidden layer in f is H' = 256, and the hidden layer
in © is Hpjgden = 256. The activation o is set to be Relu. We set A = 0.98 and ¢ = 1.0 for ADAMEL
variants unless otherwise addressed. In training, we use Adam optimizer [20] for 100 epoches with
learning rate = 10~* and batch size = 16. We evaluate the models using PRAUC (Area under the
precision/recall curve) as it measures the precision-recall relation globally.

5.2 Transfer Learning for MEL

We first experiment the effectiveness of ADAMEL variants for the MEL task. We simulate two
real-world scenarios: (S1) data in the target domain (D) shares common data sources with the source
domain (Dg) (i.e., (r,r")r € DE X D%), and (S2) data sources in the target domain are disjointed
from the source domain (i.e., (r, ') € D4 X D). For the Music data, we use three data sources
(i.e., Dg = {website 1, 2, 3}) to train our model and test on all 7 sources (overlapping scenario S1)
or only the 4 remaining sources (disjoint scenario S2) as the target domain Dr. In either scenario, we
randomly collect 100 samples (50 positive and 50 negative) from the corresponding Dt as support
set Sy. For the public Monitor data, we use entity pairs from 5 sources (i.e., Dg = {ebay.com,
catalog.com, best-deal-items.com, cleverboxes.com, ca.pcpartpicker.com}) to train the models. We
use data in all 24 sources as D for S1, and the rest 19 data sources for S2, respectively. 100 samples
are collected as Sy in the same way as Music. We report the results in Figure 2 with complete
numerical results in Table 4 and 5 of Section 7.5 of the appendix. Our first observation is that all
ADAMEL variants tend to outperform the baseline methods and our base model without adaptation,
ADAMEL-base. Also, we observe that AdaMEL-hyb achieves the best performance in all cases

Table 1: Data statistics and properties

Data # Records Entity_types |D%| |D5| |A]
Monitor 66,795 Monitor 5 24 13
Music-3K 3,070 Artist, Album, Track 3 7 9
Music-1M 1,723,426 Artist, Album 3 7 9

6

DeepMatcher N EntityMatcher I Ditto Il CorDel AdaMEL-base AdaMEL-zero N AdaMEL-few EE AdaMEL-hyb

o7 .
206
Eos

04

03

02

Overlapplng DS x D) D|SJomt DT X D)
(a) MEL performance on Music-3K

10 10
09 09
08 08
07 07
[}
3506 S s
g os %05
Qo4 Qg4
03
03
o2 <l ‘ 02
. 0.1
Artist Artist Overlapping Disjoint
Overlapping (D¥ x DT Disjoint (Df x DT Monitor
(b) MEL performance on Music-1M (c) MEL performance on Monitor

Figure 2: MEL performance (PRAUC) comparison. ADAMEL variants outperform baseline methods in almost
all cases. Particularly, AdaMEL-hyb performs the best on all entity types and datasets.

with 0.64% ~ 5.50% improvement in PRAUC than the second-best (AdaMEL-zero in most cases),
which demonstrates its effectiveness in integrating both the labeled support set Sy and unlabeled info
from the target domain Dr. AdaMEL-zero performs better than AdaMEL-few on the “Artist” and
“Album” type, while AdaMEL-few performs better on the “Track” type. This is likely due to the fact
that the track records are more diverse than the other types as the digital-format music tracks can be
remixed or covered by other artists. Thus, the high-quality labeled samples from Sy is of higher value.
The improvement of ADAMEL variants over the baselines indicates the effectiveness of domain
adaptation in incorporating data in Dp. Overall, ADAMEL variants achieve better performance
on the overlapping scenario (S1) than the disjoint scenario (S2). Besides, the performance of all
approaches running on Music-1M is lower than Music-3K. The main reason is that the data is weakly
labeled as it simply follows the hyperlinks from the websites, and does not distinguish the actual
media of the music work (i.e., the physical or digital copy). Table 5 gives the result on Monitor. We
observe similar results that ADAMEL variants tend to outperform the baselines and AdaMEL-hyb
performs the best with at least 0.51% improvement in PRAUC over the second best, EntityMatcher.

5.3 Attention Analysis

Here we showcase the learned feature importance through the attention scores produced by ADAMEL
on two datasets: Music-3K and Monitor. We only report the artist type for brevity. AdaMEL-hyb
is configured with A = 0.98, ¢ = 1.0. For Monitor dataset we observe the long “tail distribution”
of feature importance, i.e., the most important feature is “Page_title_shared” with significantly high
scores, while the other features are with roughly the same low scores. On the other hand, we observe
the more uniform distribution for the artist type in Music-3K dataset, which makes sense as all top
features are related to the artist names. The learned attention scores on both datasets imply that the
task of MEL could be addressed with some of the most remarkable features (importance inequality).

Monitor: {Page_title_sim: 0.1635, Page_title_uni: 0.0595, Source_sim: 0.0535,
Manufacturer_uni: 0.0473, Manufacturer_sim: 0.0416}

Music-3K (artist): {Main_performer_sim: 0.0739, Name_uni: 0.0697, Name_sim:
0.0628, Source_uni: 0.0597, Name_Native_Language_sim: 0.0583}

We further run AdaMEL-hyb on these selected important features only and compare the performance
with the result using the other features, as well as all the features. For Monitor, we use 3 attributes
(i.e., “Page_title”, “Source” and “Manufacturer”). For the artist type of Music-3K, we use the 3
name-related attributes (i.e., “Main_performer”, “Name”, Name_Native_Language), and “Source”.
Similarly, for the other two types, we use their corresponding top important attributes, and report
the results in Table 2. We observe that by using the selected important features only, ADAMEL is
capable of achieving comparable and even slightly better performance than using all features with
2.21%, 0.87% and 2.92% improvement in PRAUC on Monitor, Music-3K (artist) and Music-3K
(album), respectively. For Music-3K (track), using the top attributes only performs slightly worse

than using all attributes, which is likely due to the diversity of track records. Nevertheless, these
experimental results show that model training can further benefit from feature importance as using all
the possible attributes could introduce irrelevant or noisy input to the model (e.g., using album-related
features when inferring the artist type).

Table 2: Performance (PRAUC) comparison using the selected important features vs. the other features and all
features. Numbers in the parenthesis denote the counts of features.

Dataset | Top Attributes (#) | Other Attributes (#) | All Attributes (#)

Monitor 0.9479 £ 0.0007 (3) | 0.4276 £ 0.0015 (10) | 0.9258 + 0.0025 (13)

Music-3K, artist | 0.9298 £ 0.0036 (4) | 0.7966 = 0.0005 (5) | 0.9211 % 0.0040 (9)

Music-3K, album | 0.8125 £ 0.0011 (4) | 0.4692 £ 0.0009 (5) | 0.7833 £ 0.0031 (9)
Music-3K, track |0.8398 £ 0.0004 (3) | 0.7026 + 0.0006 (6) | 0.8454 + 0.0040 (9)

5.4 Data Sources Analysis

We also experiment the stability of ADAMEL in handling new data sources that arrive incrementally
in the process of real-world knowledge integration (Q4). We use the public Monitor dataset and
compare AdaMEL-hyb (A = 0.98, ¢ = 1.0) with the best-performing baseline, EntityMatcher, and
the fastest baseline, CorDel-Attention. We use 1500 entity pairs from the same 5 data sources as
mentioned in Section 5.2 to train the models. To test the performance on MEL, we first randomly
select 200 entity pairs from each of 5 unseen data sources and form totally 1000 pairs to create the
target domain. Then, we incrementally add up to 200 entity pairs from 2 new sources (ADr) to
Dr, such that Dy = Dy U ADp. We randomly select 100 labeled samples from Dy to create Sy
and fix it throughout each run of the experiment so that its impact is consistent. We also record
the average runtime as an empirical study of the model efficiency. As shown in the Figure 3,
AdaMEL-hyb is more stable than both EntityMatcher and CorDel-Attention with significantly higher
performance in handling the incrementally incoming data sources. This is due to the fact that
AdaMEL-hyb continuously updates parameters in the attention embedding function f to adapt to
new data sources in Dp. Comparing with CorDel-Attention, EntityMatcher performs better and
could occasionally compete with AdaMEL-hyb under some scenarios (|D| = 17,21), but it is not
stable as the performance fluctuates. Also, AdaMEL-hyb takes less time to train than both baselines.
The empirical runtime comparison corresponds to our conjecture as AdaMEL-hyb does not require
sophisticated operations on word-level embeddings and thus having relatively less parameters to train.
These findings demonstrate the capability of ADAMEL in consistently handing MEL with a variety
of incoming data sources, while being more robust. Also, they strengthen our claim that finding
important features as the transferable knowledge in MEL could benefit the model performance with
reduced computational complexity.

T~
0.9

o 0.8

207 Method | Runtime (s)

& AdaMEL-hyb 319.20 £ 7.20
0.6 g AdaMEL-hyb CorDel 906.19 + 46.35
05 CorDel-Attention EntityMatcher 2500.43 + 17.56

EntityMatcher
0.4
7 9 " 18 15 17 19 21 23 25

#Data sources in the target domain

Figure 3: AdaMEL-hyb performs more stably as #data sources increases in D7 with less runtime.

6 Conclusion

In this work, we tackle the problem of multi-source entity linkage (MEL) and described a deep
learning solution based on domain adaptation, ADAMEL. ADAMEL highlights the impact of
important attributes in MEL and automatically learns feature importance that adapts to the both seen
and unseen data sources as the generic transferable knowledge. We propose a series of ADAMEL
variants to handle different real-world learning scenarios, depending on the availability of labeled
entity pairs from the target domain. Comparing to heterogeneous schema matching baselines,
ADAMEL is able to handle hard transfer learning cases such as unseen data sources in the target
domain and training on weakly-labeled data, while achieving up to 11.24% improvement than the
baselines based on supervised learning in PRAUC score for the multi-source entity linkage task. We
also provide the analysis on the learned feature attention and experiment the impact of data sources.

Customer Impact

This work focuses on linking entities from multiple external WEB sources to help Alexa answer
queries about them. The aggregated knowledge will reduce the number of customer queries where
Alexa fails to answer due to missing data. The quality of entity linkage directly impacts the quality
of answers as such any improvements in linkage quality is expected to enhance overall customer
experience. The research is not expected to put any customer segments at disadvantage. We do not
leverage any biases in the data.

References

[1] Yoshua Bengio. Deep learning of representations for unsupervised and transfer learning. In
Proceedings of ICML workshop on unsupervised and transfer learning, pages 17-36, 2012.

[2] Mikhail Bilenko and Raymond J Mooney. Adaptive duplicate detection using learnable string
similarity measures. In KDD, pages 39-48, 2003.

[3] Rita Chattopadhyay, Qian Sun, Wei Fan, Ian Davidson, Sethuraman Panchanathan, and Jieping
Ye. Multisource domain adaptation and its application to early detection of fatigue. ACM TKDD,
6(4):1-26, 2012.

[4] William W Cohen and Jacob Richman. Learning to match and cluster large high-dimensional
data sets for data integration. In KDD, pages 475—480, 2002.

[5] di2kg. 2nd international workshop on challenges and experiences from data integration to
knowledge graphs. http://di2kg.inf.uniroma3.it/2020/, 2020.

[6] AnHai Doan and Alon Y Halevy. Semantic integration research in the database community: A
brief survey. Al magazine, 26(1):83-83, 2005.

[7] Xin Luna Dong and Felix Naumann. Data fusion: resolving data conflicts for integration.
Proceedings of the VLDB Endowment, 2(2):1654—1655, 2009.

[8] Lixin Duan, Dong Xu, and Ivor Wai-Hung Tsang. Domain adaptation from multiple sources:
A domain-dependent regularization approach. IEEE Transactions on neural networks and
learning systems, 23(3):504-518, 2012.

[9] Wenfei Fan, Xibei Jia, Jianzhong Li, and Shuai Ma. Reasoning about record matching rules.
Proceedings of the VLDB Endowment, 2(1):407-418, 2009.

[10] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. arXiv preprint arXiv:1703.03400, 2017.

[11] Cheng Fu, Xianpei Han, Jiaming He, and Le Sun. Hierarchical matching network for heteroge-
neous entity resolution. In Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, pages 3665-3671, 2020.

[12] Lise Getoor and Ashwin Machanavajjhala. Entity resolution: theory, practice & open challenges.
Proceedings of the VLDB Endowment, 5(12):2018-2019, 2012.

[13] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT press Cambridge, 2016.

[14] Kaiming He, Georgia Gkioxari, Piotr Dolldr, and Ross Girshick. Mask r-cnn. In Proceedings of
the IEEE ICCV, pages 2961-2969, 2017.

[15] Di Jin, Mark Heimann, Ryan A Rossi, and Danai Koutra. node2bits: Compact time-and
attribute-aware node representations for user stitching. In ECML-PKDD, pages 483-506.
Springer, 2019.

[16] Muhammad Ebraheem Saravanan Thirumuruganathan Shafiq Joty and Mourad Ouzzani Nan
Tang. Distributed representations of tuples for entity resolution. Proceedings of the VLDB
Endowment, 11(11), 2018.

http://di2kg.inf.uniroma3.it/2020/

[17] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for
efficient text classification. In Proceedings of the 15th Conference of the European Chapter of
ACL: Volume 2, Short Papers, pages 427431, 2017.

[18] Jungo Kasai, Kun Qian, Sairam Gurajada, Yunyao Li, and Lucian Popa. Low-resource deep
entity resolution with transfer and active learning. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, pages 5851-5861, 2019.

[19] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pages
4171-4186, 2019.

[20] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[21] Hanna Kopcke and Erhard Rahm. Frameworks for entity matching: A comparison. Data &
Knowledge Engineering, 69(2):197-210, 2010.

[22] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan. Deep entity
matching with pre-trained language models. Proceedings of the VLDB Endowment, 14(1):50-60,
2020.

[23] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-
based neural machine translation. In Proceedings of the 2015 Conference on EMNLP, pages
1412-1421, 2015.

[24] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park, Ganesh
Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. Deep learning for entity
matching: A design space exploration. In Proceedings of the 2018 International Conference on
Management of Data, pages 19-34, 2018.

[25] Hao Nie, Xianpei Han, Ben He, Le Sun, Bo Chen, Wei Zhang, Suhui Wu, and Hao Kong. Deep
sequence-to-sequence entity matching for heterogeneous entity resolution. In Proceedings of
the 28th ACM International Conference on Information and Knowledge Management, pages
629-638, 2019.

[26] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on
knowledge and data engineering, 22(10):1345-1359, 2009.

[27] Kun Qian, Lucian Popa, and Prithviraj Sen. Active learning for large-scale entity resolution. In
Proceedings of the 2017 ACM CIKM, pages 1379-1388, 2017.

[28] Rohit Singh, Venkata Vamsikrishna Meduri, Ahmed Elmagarmid, Samuel Madden, Paolo
Papotti, Jorge-Arnulfo Quiané-Ruiz, Armando Solar-Lezama, and Nan Tang. Synthesizing
entity matching rules by examples. VLDB, 11(2):189-202, 2017.

[29] Shiliang Sun, Honglei Shi, and Yuanbin Wu. A survey of multi-source domain adaptation.
Information Fusion, 24:84-92, 2015.

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in NIPS, pages
5998-6008, 2017.

[31] Zhengyang Wang, Bunyamin Sisman, Hao Wei, Xin Luna Dong, and Shuiwang Ji. Cordel: A
contrastive deep learning approach for entity linkage. arXiv preprint arXiv:2009.07203, 2020.

[32] Garrett Wilson and Diane J Cook. A survey of unsupervised deep domain adaptation. ACM
TIST, 11(5):1-46, 2020.

[33] Wei Ying, Yu Zhang, Junzhou Huang, and Qiang Yang. Transfer learning via learning to transfer.
In ICML, pages 5085-5094, 2018.

[34] Chen Zhao and Yeye He. Auto-em: End-to-end fuzzy entity-matching using pre-trained deep
models and transfer learning. In WWW, pages 2413-2424, 2019.

10

7 Supplementary Materials

7.1 Definition of Symbols and Notions

In this section, we list the symbols and notations used in this paper as well as their definitions in

Table 3.

Table 3: Summary of notation

Symbol

Definition

A={4;}

r,r[A]

Ds, Dr

(r,r")s/r
S/

i
Lk

D*

X?y

a set of pre-defined textual attributes (data source schema)
an entity record and the value (word tokens) of attribute A
source and target domain, respectively

an entity pair in the source and target domain, respectively
set of data sources in general

the data source that record r is sampled from

set of data sources in a domain, e.g., Dg = {r*},epg

the number of relational features, F' = 2|.A|

H-dim latent feature vector of an entity pair and its label
D-dim token embedding of feature j

attention embedding function RP* ¥ — R

7.2 Detailed Algorithms

Algorithm 1 AdaMEL-zero

Input: Dg = {(h;,v;)}, Dr = {h;}, A, batch size B
Qutput: Predicted y; for h; € Dp, updated a, W

. Initialize a, W and V, b

. loop training epochs

: for h € Dg U Dr do

Form x with V., b

J+0

Shatch < RANDOMSAMPLE(Dg, B)
for (x,y) € Spuen do
: Lun — (1 -)\)Lbase +)\Ltarget
10: J— J+ VL,

11: end loop

1
2.
3
4
s TO) ¢ iy Yeny S(x0)
6
7
8
9

12: Form x, f with updated a, W, V. b

13: <+ 0
14: for x; € Dr do

150 ¥i < O(o(f(x:) ©x;))

16: returny, a, W

> Eq. (4)

> Initialize loss

> Loss function
> Update a, W,V b

> Eq. (6)

In this section we depict algorithms for AdaMEL-zero (Algorithm 1), AdaMEL-few (Algorithm 2)
and AdaMEL-hyb (Algorithm 3). Particularly, line 3-4 project the affine transformation of entity pairs
from both Dg and Dr. Line 5 computes f(x’), the attention vector averaged over entity pairs in the
target domain. Line 8-10 computes each attention vector in the sampled batch f(x;) and adapt it to
f(x') to compute the 10ss Liareer. ADAMEL minimizes both the inference 1oss Liase and Liarget tO
train the parameters in f and form the transferrable knowledge K = f(x;) for x; € Dz (Line 12).
Line 14- 15 denote the inference process.

In Algorithm 2, line 7- 8 denote the training process of f to minimize the loss Lpase, and line 10- 11
denote the process of further training under the supervision of labeled samples in Sy;. Algorithm 3
integrates both Sy and the unlabeled data from Dy.

11

Algorithm 2 AdaMEL-few

Input: Dg = {(h;,v:)}, Su = {(hi,y:)}, Dr = {h;}, ¢, B

Qutput: Predicted y; for h; € Dp, updated a, W
1: Initialize a, W and V, b
2. loop training epochs
3: for h € Dg U Dy do
Form x with V., b
J<+0
Shach ¢ RANDOMSAMPLE(Dg, B)
for (X, y) € Spatch do
J — J 4+ Ve
Form f with updated a, W
10: Compute Dg, Dy, d;;s, dl_)s
11: Lssl — Lbase + (bLsupport
12: J <+ J+ Vi
13: end loop
14: Infer y

R AN L

> Eq. (4)
> Initialize loss

> Loss of ADAMEL-base
> Eq. (6)

> Loss function
> Update a, W,V b

> Same as Line 13- 15 of Algorithm 1

15: returny, a, W

Algorithm 3 AdaMEL-hyb

Input: Ds = {(h;,v:)}, Su = {(hi,y:)}, Dr = {h;}, ¢, B
Output: Predicted y; for h; € Dp, updated a, W
1: Initialize a, W and V, b
2: loop training epochs
3: for h € Dg U D1 U Sy do
: Form x with V, b > Eq. (4)

F(&') < 1571 Ly f(x1)

4
5
6: J+0
7
8
9

> Initialize loss
Shateh ¢ RANDOMSAMPLE(Dg, B)
for (x,y) € Spach do

: Lun — (1 -)\)Lbase +)\Ltarget

10: J— J+ Vi

11: Form f with updated a, W > Eq. (6)

12: Compute DY, Dy, d;;s, dp,

13: Lhybrid = Ly, + ¢Lsupport

14: J—J+ VLhybrid

15: end loop

16: Infer y > Same as Line 13- 15 of Algorithm 1

17: returny, a, W

> Loss of AdaMEL-zero

> Loss function
> Update a, W,V b

7.3 Parameter Complexity

We measure the parameter complexity of ADAMEL in terms of the numbers of learnable parameters
that comes from three parts: (i) per-feature non-linear affine operations that transform the word
token embeddings to the latent feature vectors, (ii) the shared feature attention embedding function
f, which includes learning W and a, and (iii) the multilayer perceptron (MLP) © with 1 hidden
layer for classification. For (i), there are totally F features, each feature is associated with V7 *P
and b, thus leading to O(FDH) learnable parameters. For (i), as W *H and a'" are shared
across all features, there are totally O(H H’) parameters. The neural network © in (iii) takes the
concatenated F'H'-dim features as input with one Hyjqgen-dim hidden layer. Therefore, ADAMEL
has totally O(FDH + HH' + F H' Hpigaen) parameters to learn. We discuss the setup values of H,
H'’ and Hpjggen in the configuration of Section 5.

7.4 Detailed Experimental Configuration

Data. Here we list the detailed description of the datasets used in our experiments.

12

* Music-1M is a weakly labeled corpus crawled from 7 public music websites. We name
them website 1-7 for confidentiality. There are 2 entity types: artists and albums. Entity
pairs are labeled via the hyperlinks in pages, so there might be mixed-type matching errors,
e.g., matching an artist to her album.

* Music-3K is a manually labeled corpus containing the same data sources as Music-1M. It
has three types: artist, album and tracks. The manual annotation is based on 9 attributes
such as the artist name and album title. Errors such as mixed-type matching are carefully
corrected.

* Monitor contains monitor data from 24 sales websites such as ebay.com and shopmania.com.
We filter out attributes with > 60% empty records, and get totally 13 attributes such as
product description, manufacturer info, condition status, etc.

The attribute values in the above datasets are generally longer with diverse characters, which makes
it harder to summarize the attribute representation. For example, for the artist type of Music-3K
dataset, the averaged attribute length is 25.75 word tokens, and for Monitor, the averaged attribute
length is 11.73 word tokens. On the contrary, this number is 6.26 and 5.21 word tokens for the “dirty”
and “heterogeneous” Walmart-Amazon dataset [11] from the benchmark, respectively. In terms of
the Music datasets, as the music works come from different countries, many entities are recorded
with non-English characters & phrases for attributes such as the title, album and artist names. Unlike
Music-1M that labels entity pairs through website hyperlinks, Music-3K also inspects whether the
pair of records indicate the music work from the same physical copy (i.e., “Album”), or from the
same digital copy in formats such as remix or cover (i.e., “Track”). The Monitor dataset is highly
imbalanced with more than 99% entity negative pairs.

Baselines. For DeepMatcher, we use its hybrid variant (bi-directional RNN with attention) to
summarize attributes and 2-layer highway neural network with 300-dim hidden layer. The training
epoches is set to 40 with batch size = 16. For EntityMatcher, we use the full matching model that
uses bi-GRU (hidden size= 150) to embed attribute word sequences with cross-attribute token-level
alignment. The training epoch is set to 20 with batch size = 16. For CorDel, we use the attention-
based variant of CorDel that learns the importance of words within the same attribute to validate
the effectiveness of our attribute-level attention module. Moreover, CorDel-Attention was shown
to perform best on long textual attribute values, which matches the property of our input data. All
these three baselines use the pretrained FastText [17] to derive the 300-dimensional embeddings for
word tokens in each attribute. We set the cropping size = 20 and sum the embeddings of word tokens
as the feature embeddings for CorDel. The training epoch is set to 20 with learning rate = 10~*
and batch size = 16. For Ditto, we tested its optimization strategies and adopted the “token span
deletion” for data augmentation, “general” domain knowledge and retaining high TF-IDF tokens to
summarize the input sequences. We also tested all pretrained language models, i.e., bert, distilbert,
and albert, and 5ended up using bert. The training epoch is set to 40 with batch size= 64 and learning
rate= 3 x 107°.

We conduct all experiments 3 times and report the mean and std. We run these experiments on the
Linux platform with 2.5GHz Intel Core 17, 256GB memory and 8 NVIDIA K80 GPUs.

7.5 Complete Experimental Results of MEL

In this section we provide the complete numerical result shown in Section 5.2. The results on the
Music dataset are shown in Table 4. We observe that AdaMEL-hyb performs the best out of all
ADAMEL variants, while AdaMEL-few and AdaMEL-hyb tend to perform second to the best. Table 5
records the Monitor dataset, where we observe similar findings.

7.6 Effectiveness of Adaptation

Setup. To evaluate how well ADAMEL learns feature importance adapted to the target domain (Q2),
we study the effectiveness of A adopted in AdaMEL-zero and AdaMEL-hyb as it controls the weight
of adapting to unlabeled data in the training process (larger A leads to more adaptation). We run both
variants of ADAMEL on the Music-3K dataset and report the performance on MEL. As discussed in
Section 4.4, records from both the source and target domains are projected into the same space using
the shared attention embedding function, and ADAMEL attempts to adapt the model to match these
feature importance distribution. Intuitively, with sufficient adaptation, feature importance vectors

13

Table 4: ADAMEL performance (PRAUC) of multi-source entity linkage on the Music data. The best score
of each entity type is marked in bold. Out of ADAMEL variants, AdaMEL-hyb performs the best with
0.64% ~ 5.50% improvement over the second-best variant (marked with *) in PRAUC. ADAMEL outperforms
the baseline with 2.67% (ADAMEL-base) to 11.24% (AdaMEL-hyb) improvement on average.

Overlapping (Dg X D7)
Album
0.6093 £ 0.0009
0.6922 + 0.0021
0.6373 £ 0.0042
0.6531 £ 0.0019

Disjoint (D7 X D7)
Album
0.3710 £ 0.0012
0.4733 £0.0014
0.3832 + 0.0027
0.4586 + 0.0002

Method

Artist
0.6794 £ 0.0022
0.8682 + 0.0017
0.7920 + 0.0032
0.8489 + 0.0047

Track
0.5826 £ 0.0017
0.6694 + 0.0084
0.5938 + 0.0051
0.7032 £ 0.0364

Track
0.5572 £ 0.0014
0.6446 + 0.0032
0.5914 + 0.0055
0.6738 + 0.0121

Artist
0.4492 £ 0.0021
0.6629 + 0.0032
0.5786 + 0.0039
0.7280 + 0.0315

DeepMatcher
EntityMatcher
Ditto
CorDel-Attention

Music-3K | \pAMEL-base | 0.8545 00143 0.7204 +0.0033 0.7277 £0.0077 | 07516+ 0.0367 0.5569 +0.0072 0.7107 £ 0.0093
AdaMEL-zero 0.9142 4 0.0018* 07338 + 0.0001* 0.7547 £ 0.0027 | 0.8263 + 0.0121* 0.6071 & 0.0072* 0.7453 + 0.0012
AdaMEL-few 0.8633 +0.0011 0.7241 +0.0080 0.7904 & 0.0048* | 0.7510 +0.0331 0.5619 +0.0119 0.8129 + 0.0057*
AdaMEL-hyb 0.9211 + 0.0040 0.7833 & 0.0031 0.8454 & 0.0040 | 0.8390 + 0.0125 0.6229 + 0.0115 0.8193 =+ 0.0097
DeepMatcher 0.7132 £ 0.0033 0.5629 £ 0.0021 0.6033 £ 0.0045 0.1742 £ 0.0013
EntityMatcher 0.8098 & 0.0043 0.6731 & 0.0024 0.7239 +0.0038 0.2331 + 0.0031
Ditto 0.7663 +0.0025 0.6123 + 0.0022 0.6678 +0.0019 0.1933 + 0.0027

Music_qy | CorDel-Attention | 0.8118 +0.0087 0.6811 4 0.0432) 0.7129 £ 0.0096 0.2224 % 0.0010)

ADAMEL-base
AdaMEL-zero
AdaMEL-few
AdaMEL-hyb

0.8165 £ 0.0184
0.8607 £ 0.0066*
0.7942 + 0.0090
0.8710 + 0.0130

0.6872 £ 0.0053
0.7693 + 0.0038*
0.7126 £ 0.0102
0.7942 + 0.0015

0.7086 + 0.0180
0.7469 £ 0.0228*
0.7177 £ 0.0171
0.7632 + 0.0034

0.2269 + 0.0050
0.3407 £ 0.0056*
0.2473 £ 0.0131
0.3582 + 0.0043

Table 5: ADAMEL performance (PRAUC) on Monitor. All variants outperform the baseline, AdaMEL-hyb
performs the best (marked in bold) with at least 1.01% improvement over the second-best ().

Method Overlapping Disjoint

DeepMatcher 0.8336 +0.0032 | 0.7884 £ 0.0011
EntityMatcher 0.8858 £+ 0.0034 | 0.9051 £ 0.0042
Ditto 0.8841 4+ 0.0010 | 0.8518 4 0.0023

Monitor CorDel-Attention | 0.7240 4+ 0.0026 | 0.6353 + 0.0165
ADAMEL-base 0.8884 £ 0.0057 | 0.8711 £ 0.0050
AdaMEL-zero 0.8930 £ 0.0013 | 0.8719 £ 0.0030
AdaMEL-few 0.9127 4 0.0035* | 0.9005 + 0.0059*
AdaMEL-hyb 0.9258 £+ 0.0025 | 0.9106 & 0.0029

from both domains should align well. We study the performance of AdaMEL-zero and AdaMEL-hyb
given different values of \ on the “artist” and “album” type from the Music-3K dataset.

Results. To evaluate the impact of adaptation to the linkage results, in Figure 4 we show the
performance of our variants with different A values. We observe that as A approaches (but not equals)
to 1, the general performance in terms of PRAUC improves for both AdaMEL-zero (0.8014 - 0.9091)
and AdaMEL-hyb (0.8242 - 0.9201), which again demonstrates the effectiveness of adaptation. It is
worth noting that when A = 1, both AdaMEL-zero and AdaMEL-hyb perform worse without giving
meaningful results. This is because at this point, AdaMEL-zero is trained without supervision of the
labeling in Dg, and the only term in the loss function is the regularization. AdaMEL-hyb is better
as labeling in Sy is still used, but the overall performance deteriorates due to the lack of labeling
from Dg. As a result, the parameters trained (i.e., a, W) would tend to only “match” the feature
distribution between Dg and D that are not tailored to classification.

In Figure 5, we observe that for both variants, feature attention vectors from Dg and Dy align better
when A = 0.98 than A = 0, which confirms the effectiveness of adaptation. In addition, we observe
that comparing with AdaMEL-zero (Figure 5b), AdaMEL-hyb (Figure 5d) generates better adapted
results as the projected records from Dg and Dt are almost indistinguishable, which is as expected
as the labeled support set is leveraged.

7.7 Effectiveness of Support Set

Setup. To better understand the effectiveness of the labeled support set (QS), we perform the
sensitivity analysis with incrementally increasing numbers of labeled samples in the support set Syy.
Following Section 5.2, we randomly select 200 additional samples from Dy of the public Monitor
dataset and create the support set with totally 300 labeled samples. We run two ADAMEL variants
that leverage the support set, AdaMEL-few (¢ = 1.0) and AdaMEL-hyb (A = 0.98, ¢ = 1.0) in this
experiment with |Sy| ranging from 1 to 300 with step size = 20 (specifically, we “zoom in” the
smaller values and have |Sy| = {1, 5, 10, 20, 40, 60, - - - , 300}). In each run, the samples in S are
randomly selected.

14

0.8 ‘
Sor
< A=1
&i 0.6
05 l
—— AdaMEL-hyb o
04 AdaMEL-zero

1.0

0.9
08 1
! ! - o)
% 07 e }
& o6 pynT
05 l
—— AdaMEL-hyb
04 AdaMEL-zero (©)

03 03
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.900.98 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.900.98
A A

(a) ADAMEL performance change on Music-3K, (b) ADAMEL performance change on Music-3K,

artist type album type
Figure 4: AdaMEL-zero and AdaMEL-hyb performance improve with increasing A from 0 to 0.98 (fitted with
linear reoraccian) Tha narfarmanca dranc whan Y —] gc nn lahalad data in T ic nead
30 o o I - source g N 2 - source
'& ¥ ox, target 20 Xxx » target
20 5 A mean(src) ; : ’ A mean(src)
’\x" ’: “: A mean(tar) 10 J - £, mean(tar)
10 ’é Lo L =
*m, % ok
‘ Y
N g ¥ “ A, B, ~
£ £ . S I £
a % X % a
-10 R : 'E;:g{“swl . -10
» s s
20 %, -20
-30 o
e -30
-40
20 -10 0 10 20 30 40 40 30 -20 -10 0 10 20 30
Dim 1 Dim 1

(a) AdaMEL-zero with no adaptation (A = 0) (b) AdaMEL-zero with adaptation (A = 0.98)

30

30 , * source source
’5 target target
20 w0 .%% A mean(src) 20 mean(src)
o6,.° g’ %0 Sy
10 ok,) :’é&\:} A mean(tar) o ¢ m mean(tar)
% x 00 £ g = ’ LA °
o W’}é‘?‘h’ R &
o~ % " ol N % .
E REREE, o E o
510 - a8 S
20 -10
-30
-&.' 20
-40 B"’
50 -30
-20 -10 0 10 20 30 -15 -10 -5 0 5 10 15 20
Dim 1 Dim 1

(c) AdaMEL-hyb with no adaptation (A = 0) (d) AdaMEL-hyb with adaptation (A = 0.98)

Figure 5: Source and target domain feature attention vectors are better aligned with high value of A for both
AdaMEL-few and AdaMEL-hyb (visualized with TSNE, dim=2).

Result. The experimental result is shown in Figure 6. Our first observation is that at the initial stage
of the experiment, the performance of both AdaMEL-few and AdaMEL-hyb improves as the number of
used labeled samples from Sy increases. Particularly, we observe ~ 1% performance improvement
from |Sy| = 1to |Sy| = 140 for AdaMEL-few and 2% ~ 3% improvement for AdaMEL-hyb. This
overall performance improvement is as expected since an increasing amounts of labeled samples
from Dy are used to supervise the learning process. In the late stage (|Sy/| > 140), we observe that
the performance fluctuates in each run and the overall performance saturates. This indicates that the
feature importance learned by ADAMEL has sufficiently adapted and does not significantly change
as more labeled data are collected in Syy. Moreover, comparing with AdaMEL-few, AdaMEL-hyb
performs similarly when the size of support set is small (|Si7| < 60), and it consistently outperforms
when |Sy| > 60. This is likely due to the bias of feature importance brought by particular labeled
samples selected when |Sy7| is small. When Sy contains more samples, the learned feature importance
becomes stable and sufficiently adapted to Sy, and the outperformance given by AdaMEL-hyb over
AdaMEL-few comes from the unlabeled samples from Dr. As a rule of thumb, Figure 6 indicates that
a small support set with |Syy| = 100 ~ 200 labeled samples from Dy is beneficial to learn feature

15

1.00

098

0.96

094
0092, . . s
2000 50¢
% 0.88

0.86

04 —— AdaMEL-hybrid

0.82 AdaMEL-few

0.80
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Size of support set |Sy|

Figure 6: Sensitivity analysis of the size of support set |Sy| fitted with order-2 polynomial regression on
AdaMEL-few and AdaMEL-hyb. As more labeled samples are included in Si7, the model performance (PRAUC)
increases initially and then saturates.

importance and to improve the MEL performance of ADAMEL. Too few samples would incur bias
to the trained model, while too many samples would be expensive to obtain in practice, and does not
necessarily help improve the model.

7.8 Additional Related Work

Here we describe additional works related to this paper in detail.

In addition to DeepER [16] and DeepMatcher [24], CorDel [31] proposes to compare and contrast the
pairwise input records before getting the embeddings so that small but critical differences between
attributes can be modeled effectively. There are also recent works that formulate entity linkage across
different data sources as heterogeneous entity matching [22, 11, 25], for example, EntityMatcher [11]
proposes a hierarchical matching network that jointly match entities in the token, attribute, and
entity level. Ditto [22] proposes to leverage the pretrained language model [16, 19, 22] such as
BERT or DistilBERT, as well as domain knowledge and data augmentation to improve the matching
quality. The basis of these above deep models for heterogeneous schema matching is to accurately
summarize the attribute words through advanced NLP techniques such as word token-level RNN
(with attention) or using pretrained language models. On the contrary, our proposed method does
not require sophisticated computation to summarize words in each attribute. ADAMEL focuses on
the impact of important attributes in matching and explicitly models their importance using the soft
attention mechanism as the transferable knowledge. Such attribute-level importance is agnostic to
specific data sources and generalizes better than individual words in the transfer learning paradigm.
In transfer learning, DeepMatcher+ [18] extends DeepMatcher with the combination of transfer
learning and active learning to achieve comparable performance with fewer samples. However, this
work aims at dataset adaptation rather than the attribute matching, and the focus is not improving the
matching performance. ADAMEL explicitly learns feature importance by adapting to the massive
unlabeled data from unseen sources as the transferable knowledge for the multi-source EL task.

16

	Introduction
	Related Work
	Preliminaries
	Proposed framework
	Formulation
	Feature Representation
	Feature Attention Embedding
	Domain Adaptation-based Variants

	Experiments
	Experimental Setup
	Transfer Learning for MEL
	Attention Analysis
	Data Sources Analysis

	Conclusion
	Supplementary Materials
	Definition of Symbols and Notions
	Detailed Algorithms
	Parameter Complexity
	Detailed Experimental Configuration
	Complete Experimental Results of MEL
	Effectiveness of Adaptation
	Effectiveness of Support Set
	Additional Related Work

