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Abstract. Given a network where the same set of nodes have multiple types
of relationships, how do we efficiently predict potential links in the future (e.g.,
interactions between social actors), and how do we predict links using informa-
tion from other relationships? These problems have been widely studied recently,
most of the existing methods either aggregate multiple types of relationships into
a single network or consider them separately and ignore the correlations across
relationships, leading to information loss. In this work, we present TELELINK,
a general link prediction model that works for networks with single and mul-
tiple relationships. TELELINK predicts potential links based on community de-
tection and improves link prediction by bringing in a cohesive structure across
multiple networks constructed by different relationships or node attributes. To
further improve the prediction performance, we extend TELELINK to a semi-
supervised scheme, incorporating partially labeled information. Our extensive ex-
periments show that TELELINK outperforms existing methods in predicting new
links. Specifically, among the various datasets that we study, TELELINK achieves
a precision improvement by up to 110% compared to the baselines.

1 Introduction and Background

Recent years have witnessed a surge of interest for understanding and characterizing the
properties of social networks, where nodes represent people or other entities embedded
in a social context and links denote relationships or interactions, such as friendship,
collaboration, or influence between entities. An important problem in this context is
link prediction, which is to predict links that will appear in the network during the
interval from time 7" to a later time 7" + 1, given a snapshot of a network at time 7" [1]]
or before. Link prediction is useful in various areas. In social networks, link prediction
algorithms can be used to predict relationships among individuals such as friendship,
partnership and their future behaviors such as communications and collaborations [2].
In biological networks such as protein-protein interaction networks where over 99%
links are unknown [3]], accurately predicting possible links could sharply reduce the
experimental cost.

A typical framework of link prediction algorithm is based on “similarity”, where
each pair of nodes is given a similarity measure, and node pairs with high similarity
scores are assumed more likely to be connected [4]. However, most of the similarity
measures mainly consider the network topological structure (e.g., the number of com-
mon neighbors [5], or the length of the shortest path between nodes [6]]). These kinds
of methods ignore the information provided by the community structure. A commu-
nity is a densely connected group of nodes while sparsely connected to other groups.



Community structure has been proved to be critical for link prediction [7]. For exam-
ple, in the friendship network, a community could be a group of people in the same
school, company or club and new links (i.e. friendships) are more likely to form within
the group. [8] shows that group membership information can enhance the accuracy of
link prediction. However, their method does not scale well to very large networks in
practice.

The real world networks are always multi-relational, where links have different
meanings and bring challenges to link prediction. For example, in a Twitter network,
the links could be different interactions such as replying or mentioning. The problem is:
how can one predict possible links representing a particular relationship using the in-
formation provided by other relationships? Two typical strategies have been employed:
pre-fusion and post-fusion. Pre-fusion aggregates multiple types of relationships into a
single link while post-fusion separately studies each type of links independently and ig-
nores the correlations across types. But both approaches result in a loss of information.

Another issue in link prediction is how to develop a method that combines topolog-
ical information and node attributes. Existing work has employed supervised classifiers
[9], which is trained to discriminate between positive links (i.e. links that form) and
negative links (i.e. links that do not form) by using multiple sources of information as
features. Those methods suffer from the imbalance problem: in real networks, the num-
ber of positive links is significantly less than that of negative links. To overcome the
imbalance problem, typical strategies are under-sampling and over-sampling [9], which
lead to issues including overfitting.

Present work We present TELELINK, a general link prediction model to address
the above challenges. We consider multiple layers of networks, one is target layer —
the particular type of links to be predicted (e.g. Twitter follower-followee network) and
others are auxiliary layers, which can be constructed based on other relations between
nodes (e.g. reply or retweet between Twitter users) or nodes attributes (e.g. geographical
information in users’ profile). TELELINK predicts potential links using a probabilistic
similarity measure between nodes defined by the path information of multilayer com-
munity structure revealed by Multiplex Infomap [10], a random-walk based commu-
nity detection approach. We further extend TELELINK into a semi-supervised learning
scheme to improve link prediction performance, using both networks at 7" and partially
labeled information in the networks at time 7" 4 1 in multiplex Infomap framework.

Contributions Our main contributions include:

1. New link prediction approach: We extend Infomap to address several challenges
in link prediction problem, including incorporating community structure, combin-
ing multiple relationships and combining topological and node attributes.

2. Prediction performance: We conduct extensive experiments on two different datasets.

The proposed methods achieve best prediction accuracy in new link prediction,
compared with existing link prediction methods.

3. Extended analysis on dynamic networks: We conduct experiments on real-world
social networks over time and present the influence of time intervals on prediction.

2 Related Work

Single-relational link prediction methods The seminal work of Liben-Nowell and
Kleinberg [[1] is the first comprehensive study on link prediction methods based on sim-



ilarity measures derived from graph topology structure. Empirical results of comparison
between random predictors and a variety of measures including Jaccard’s coefficient
[S]], Adamic/Adar 11]] , Katz Index [16]] and Rooted PageRank [[12]] demonstrate the use-
fulness of topological information. However, the weakness of these methods is that they
only consider a single (topological) feature. In addition to topological information, we
often have the knowledge of attributes or covariance for the nodes. Intuitively, perfor-
mance is expected to be enhanced by using this extra information. A classical approach
is to use supervised classifiers [2] unitizing different sources of information, includ-
ing topological information and node attributes as features. [9]] suggests that placing
classification algorithms in an ensemble framework can benefit by reducing variance,
especially for unstable algorithms like decision trees. These methods have to use down-
sampling or over-sampling strategies to overcome imbalance, which lead to a loss of
information or over-fitting. [13]] proposes an algorithm based on Supervised Random
Walks, which uses node attributes to guide the random walker, but it has high computa-
tional cost and does not scale well in practice.

Most existing link prediction methods do not consider community information,
which is proved to be useful to link prediction. The community in a network is a densely
connected group of nodes while sparsely connected to other groups. In [7], experi-
ments on both synthetic and real-world networks unveil how the community structure
affects the performance of link prediction methods: with increasing number of commu-
nities, the performance of link prediction could be improved remarkably. Recently, [[14]
also shows that supplement the similarity-based measures with community information
could improve the accuracy of link prediction methods.

Multi-relational link prediction methods The above link prediction techniques only
consider homogeneous links with the same semantic meaning, while in reality networks
comprise multiple types of links or interactions among nodes. Only a few studies ad-
dress link prediction problems in these heterogeneous networks. In [[15], an unsuper-
vised method extending the Admic/Adar measure and a supervised method in multi-
relational networks are proposed. [16] develops machine learning approaches based
on graphical models to infer new links across heterogeneous networks assuming that
people will form relationships in different networks with similar principles. However,
none of the multi-relational link prediction methods consider the information of multi-
relational communities, which is potentially useful in improving the performance of
link prediction algorithm.

TELELINK addresses the limitations of prior works in three perspectives. First,
TELELINK combines the topological information and nodes attributes by extracting
structures from multiple layers of networks. Second, TELELINK handles link prediction
across multi-relational networks with auxiliary layers based on multiple relationships
(e.g. reply or retweet of Twitter users). Last, to make use of the community informa-
tion, TELELINK defines “similarity” between nodes based on the path information of
multilayer community structure calculated through random walk on multiple networks.

3 Proposed Method

First we give the definitions of two fundamental concepts in our proposed method:



Definition 1 (layer) A layer of the social network is defined as a specific relation-
ship. A physical node n belongs to at least one layer of the social network.
Definition 2 (link) A link from node i to node j, l;;, is defined as the behavior
starting from node i to j. For example, in the retweet layer of the Twitter network,
l;; denotes user 4 retweets user j’s tweet.
The challenges discussed in previous sections can be summarized into two research
questions in social networks: a) How do we express similarity through communities,
thus predicting possible new links in a single layer? b) How do we combine the at-
tributes and connectivity from other layers so as to improve the prediction accuracy?
We present our solutions to these questions in the next two sections. The symbols used
in this paper are defined in Table/[I]

Symbol Definition

Le a collection of all links between communities
Le,c; adirected link starting from community i to community j
lij a directed link starting from node i to node j

C,C;  asetof all communities in the network; the sth community in the set
c® the community that node 7 belongs to

n a physical node in the network, n € 1,2,..., N
v; the probability that the random walker reaches node ¢
wy; the out-flow volume from node i to j in layer o

N, M total number of nodes and total number of communities of the network
M a partition of the network with minimum Huffman coding length

a,  specific layer of the network, represented in Greek letters

AT length of time interval for community detection

Table 1: Table of symbols

3.1 TELELINK

TELELINK is based on MapEquation[17/], a flow-based network partitioning algorithm.
MapEquation characterizes the behavior of the network through the system-wide flow
of information and considers community detection as solving a coding problem.

These flows are described using Huffman coding, following the Random Walk al-
gorithm to identify communities. Groups of nodes among which information flows fre-
quently are described as well-connected communities; the paths between communities
are also captured. [[17]] gives the community partition M by solving Equ.[I]to obtain the
minimized expected coding length of Random Walk paths:

M
min L(M) = g~ H(L) + ZPZOH(Pl) ’ )
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where L(M) denotes the Huffman coding description of random walker’s path; ¢
is the probability that the random walk switches communities on any given step, and
p% describes the fraction of within-community movements that occur in community ¢,
H(.) is the entropy of the community.

Given the partition M, the network (), &) could be described as (Cy, Lc). Cy
describes the set of communities that compose the network: Cy, = {Ci,...,Ca}.



C; is the ith community. L¢ is the collection of links between communities: Lo =
{L¢,c,, Leycys - - -5 Leycyy +- The links between communities can be interpreted as the
flow volumes of all nodes reaching from the source community to the destination com-
munity. P(Lc,c,) denotes the transition probability from community C; to C;.

Now the problem can be formulated as: given P(C,) where p € {1,..., M} and
P(Lc,c,) where p,q € {1,..., M}, how do we compute the probability of a specific
link /;; between node 7 and j? We estimate the probability of /;; through the product of
a) the transition probability from the community of node ¢ to the community of node
7, and b) the conditional probability of the random walker reaching node j inside its
community. An example is illustrated in Fig. [Ta] To predict the link in dashed line,
the random walker has to follow each possible path from node 8 to 6, which could be
expensive in real-world networks. TELELINK calculates the probability based on the
transition flows between communities (bold arrow): from community C to community
B through community A, and the probability to reach node 6 inside community B, as
illustrated in Fig. [Tb]
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Fig. 1: Single layer link prediction through Infomap

Considering nodes across the whole network, we could factorize the probability
between node i and node j into three terms, as illustrated by Equ.

Yj
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where C(*) denotes the community that node i belongs to. The first term represents the
community affiliation of node i: 1¢, is the indicator matrix determining which commu-
nity node ¢ uniquely belongs to, so each row of this matrix has only one entry with value
of 1; the second term describes transition probability from the community of node ¢ to
the community of node j, and the last term is the flow probability to node j normalized
by the flows reaching all nodes inside its community. Py, Po and Py correspond to the
indicator matrix, transition matrix, and flow matrix of the example shown in Fig.
TELELINK computes the transition probability from the source community C(*) to
destination node j as the approximation to the probability of link /;; used for predic-
tion. The reason is that communities are partitioned using Random Walk algorithm, so



information flows faster and more easily among nodes within the same community than
those between different communities. If node 4 in community C(*) has link to node j in
community C9), 4 is also likely to reach other nodes in community j. In addition, by
grouping nodes as a community, we don’t have to compute every possible link from the
source node to the destination node (which is what Random Walk algorithm does). As
aresult, TELELINK achieves precision with the guarantee of efficiency.

3.2 TELELINK in multiplex networks

Multiplex Infomap[10] extends MapEquation to multilayer networks in two ways: 1)
inter-layer dynamics described in communities and 2) overlapping communities iden-
tification. The first generalization resembles PageRank algorithm to compute the flow
volume between layers by introducing the relax rate . With probability r, the random
walker “teleports” to another network layer (thus the method is named TELELINK);
otherwise, it stays at the same layer. Equ. |3| defines the transition probability between
layer o and (3 given r:

[e% _ ] 1
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where ¢ is the indicator function seeing if the random walker stays at the same layer;
wfj denotes the out-flow volume from node ¢ to j in layer 3; sf = ijfj and S; =
X3 sf . Similar to Infomap, the interaction between layers is denoted through commu-
nities, and overlapping communities are not allowed. With information from multiple
layers of networks, TELELINK could predict links that cannot be predicted in single
layer networks. Consider the example illustrated in Fig.[2al where network layer /3 con-
sists of two disjoint communities A and B. Due to the isolation between community A
and B, the random walk algorithm could not predict links such as /5. However in Fig.
TELELINK overcomes this limitation through flows between layers « and S with a
“teleporting” relax rate r.
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Fig. 2: Single layer link prediction through Infomap



3.3 Semi-supervised TELELINK

Semi-supervised TELELINK extends the above method by employing partially labeled
data. When performing link prediction on real-world networks, historical data could
be the double-edged sword: on the one hand, historical data provides valuable struc-
tural information about the network; on the other hand, it could bring in noise, imped-
ing the prediction precision especially to rapidly changing networks. Semi-supervised
TELELINK overcomes this problem by randomly selecting small parts of the structural
information from the target network as an extra auxiliary layer in community detection.
An example is illustrated in Fig. [2b] where we use the multiplex network information
at T to predict possible links in layer 5 at time 7" + 1. In a specific attempt, a small
part of the 3 network at time 7" 4 1 is selected: the connectivity between node 3, 4, 5
and 6. It then serves as an extra auxiliary layer for community detection at the stage
of T'. In this example, such information is the key to the flows between nodes in two
disjoint communities and provides additional information to guide proper community
assignment that could help predict future links.

4 Experiments

To demonstrate that TELELINK can be applied in different contexts, we perform exper-
iments on two datasets to address three perspectives of TELELINK: 1) How well does
TELELINK perform, comparing to existing methods? 2) How are information flows
from other layers influencing the prediction in the specific layer? 3) Given different
time intervals, how would the prediction results be different?

4.1 Datasets

Primary School This dataset contains 125,773 contact records among 236 students
in a primary school in Lyon, France during two days in Oct. 2009[18l19]. We build
a weighted undirected contact network with students as nodes, contacts between two
students as links and contact frequency as weights. There are two features of students:
class and gender, which are used as two unweighted undirected auxiliary networks. The
link between two students is built if they are in the same class or of the same gender.

Twitter We use the Twitter 2012 election dataset[20]], which contains approximately
48.7 million politically active users and approximately 0.2 billion tweets during 8 weeks
starting from Sept. 2012. The dataset is divided into 8 sub-datasets according to post
time (one per week). In each sub-dataset, one weighted directed network is established
for the mention, reply and retweet respectively. In the mention (or reply, retweet) net-
work, a directed link with weight & is built from user A to user B if user A mentions
(or replies, retweets) user B exactly k times. Given the three networks in each week, we
aim to predict new links of a specific network in week 7" 4 1 from the networks during
the period [T — AT + 1, T], where AT € {1,2,...,7}. We also ignore inactive users
(with two or fewer links) because for users only posting one or two tweets during eight
weeks, their impacts on the analysis is trivial. The pre-processed dataset contains 24
networks with identical 2,073 nodes. The numbers of links in week 1 for the mention,
reply and retweet are 14,248, 8,707 and 8,944. As the numbers of links increase from
week 1 to week 8, the numbers of new links added every week for the mention, reply
and retweet are 1,990, 652 and 1,775 on average.



4.2 Experiment Setup
Baseline We consider 2 classic approaches: Jaccard’s coefficient and Adamic/Adar.

Our Methods We apply our methods on the above datasets in three scenarios:
1. TELELINK TELELINK is applied to the target single layer network.
2. TELELINK in multiplex networks (different ) TELELINK is applied to the mul-
tiplex network, flows moving between layers with different relax rate r.
3. Semi-supervised TELELINK TELELINK is applied to the multiplex network, flows
moving between layers with » = 0.15. 1/3 nodes of the target layer network are
selected for training, and the result is evaluated with 3-fold cross validation.

Evaluation Metrics The experiments are designed to predict new links appearing in
T + 1 from networks during [T — AT + 1,T], AT € {1,2,...,7}. We consider
the prediction precision at Top k nodes according to the probability to which the source
node is not already connected, i.e., how many of top k nodes suggested by our algorithm
during T + 1 actually receive links not exist in [T — AT + 1, T']. We set k equal to the
total number of links in 7"+ 1. In addition, we measure the improvement over baselines.

4.3 Results

Interaction Sensitivity We first explore the sensitivity of TELELINK to the interaction
between layers in the multiplex networks, which is controlled by relax rate r. Higher
values of r indicate that the random walker is more likely to “teleport” to other layers
while lower values of r indicate more isolation between layers. The result is shown in
Fig.[Bal The relatively flat pattern in each of the diagrams indicates that when we are
considering information from different relationships, the interaction between them does
not lead to the significant difference in prediction precision. Therefore in the following
experiments, we set 7 = 0.5 and use it for evaluation.

Method |InfoMap|Multiplex |Multiplex(i) |Semi-Supervised|Jaccard| AA
Precision| 0.191 0.198 0.193 0.205 0.103 (0.079

Table 2: Table of elementary school prediction precision

Prediction precision We measure the prediction precision on two datasets. For the
primary school dataset, there are two intervals so AT = 1. The prediction result is
illustrated in Table@ In the Twitter dataset, we also set AT = 1 for consistency. Since
there are prediction results for seven weeks, we only show the precision improvement
of TELELINK over baselines in Fig. The results show that TELELINK under all
settings outperform the baselines. The mention relationship is a loose way of communi-
cation between users, so TELELINK provides a relatively small improvement over the
baseline AA. However, for relationships such as reply and retweet where interactions
between users are stronger, TELELINK gives significant improvement over both base-
lines. In the reply relationship, TELELINK achieves 40% ~ 50% improvement through
semi-supervised learning with auxiliary layers; Multiplex TELELINK also makes great
improvements, indicating the relationship of mention and retweet is helpful when we
are predicting replies between users. In the retweet relationship, TELELINK performs
on single layer achieves approximately 110% improvement over both baselines, which
implies that for this relationship, adding other types of interactions limits or even im-
pedes the prediction performance.
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Fig. 3: Precision performance on (from left to right) mention, reply and retweet networks

Perdiction performance with dynamic networks In this section, we focus on the
impacts of different time intervals (AT used for community detection to prediction
precision. We apply TELELINK to the Twitter dataset partitioned into different time
intervals, ranging from 1 to 7. The result is shown in Fig. Intuitively, with longer
time intervals to perform community detection, more information about the network
would be included, rendering higher prediction precision. However, based on the overall
result curves, the prediction precision drops as AT increases. This means that with
long-time intervals, longer-term historical data becomes outdated, which impedes the
prediction. One interesting observation is the increase in retweet curve from AT = 1
to AT = 2. This indicates that although too much long-term historical data could be
harmful, with appropriate portion it could actually be beneficial to the prediction. This
also explains the relatively "flat” pattern from AT = 1 to AT = 2 in other curves.

5 Conclusions

In this paper, we study the problem of link prediction in multiplex networks. We propose
TELELINK to address this problem, which provides a novel link prediction approach
through community detection. TELELINK detects community structure across differ-
ent types of relationships of the network to incorporate the topological and attribute



information. Experiments on two multiplex network datasets show that the impact of
information from auxiliary layers on prediction varies with different relationships, and
TELELINK improves the prediction precision in all scenarios. In addition, the learned
interaction sensitivity and the prediction performance on dynamic networks provide a
better understanding of information flows and community detection in social networks.
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