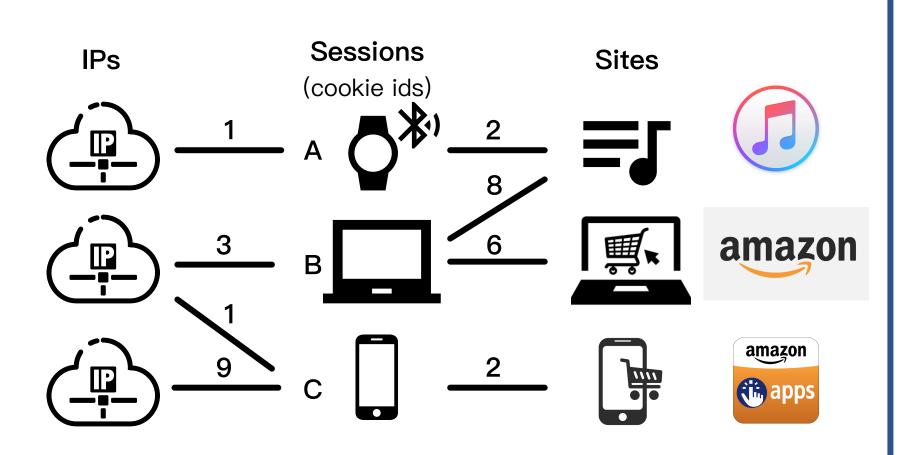


node2bits: Compact Time- and Attribute-aware Node Representations for User Stitching Di Jin, Mark Heimann , Ryan A. Rossi, Danai Koutra



Problem: Identity stitching

- Identifying and matching various online references to the same user in real-world web services.
- Applies to large-scale web data with limited access to textual info
- Orucial to personalization & recommendation

Challenges. Network embedding approach to identity stitching:

- 1) Graph heterogeneity
- 2) Temporal dynamics
 - i. Temporal validity
 - ii. Functional similarity
- 3) Quadratic comparison in similarity search
- 4) Storage inefficiency

Web device graph data

We propose **node2bits**, an efficient framework that captures *temporal dynamics* from a *heterogeneous* interaction network into *sparse binary embeddings* to perform identity stitching.

1 Temporal random walk & context

- Temporal random walk: a sequence of nodes connected by edges with non-decreasing timestamps.
- Invalid walk: $f \rightarrow c \rightarrow d$ X
- Valid walk: $a \rightarrow b \rightarrow c \rightarrow d$ ✓

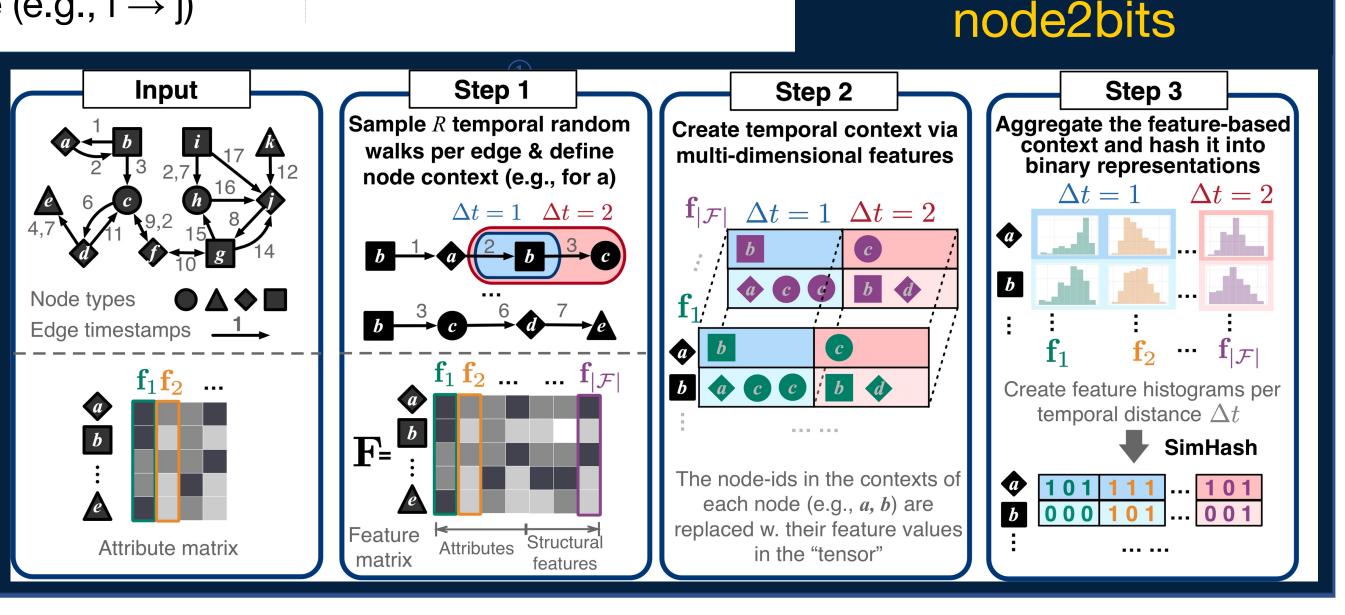
 $P(v|u) = rac{e^{ au_{u,v}}}{\sum_{w \in \Gamma_{u,w}} e^{ au_{u,w}}}$

(3) Feature aggregation & Hashing

across typed contexts

• SimHash the histograms

using sketching


- $\circ~$ Nodes along the walk are temporally valid.
- Temporal locality: controlled by random walk strategies.
 - Uniform: unbiased temporal random walk (RW)
 - Short term: bias towards edges close in time.
 - $\circ~$ Long term: bias towards edges late in time (e.g., i \rightarrow j)

transition

probability

2 Multi-dimensional feature temporal context

- Functional similarity: measured via the histograms of typed entities across temporal distances.
- e.g., 1-hop context of a is {b}, 2-hop context is {c}
 Augment contexts from multiple walks.
- Histograms
 - Sparsity for computational efficiency
 - $\,\circ\,$ Less lossy: both strong & weak values preserved

Evaluation

 \bigcirc

Ο

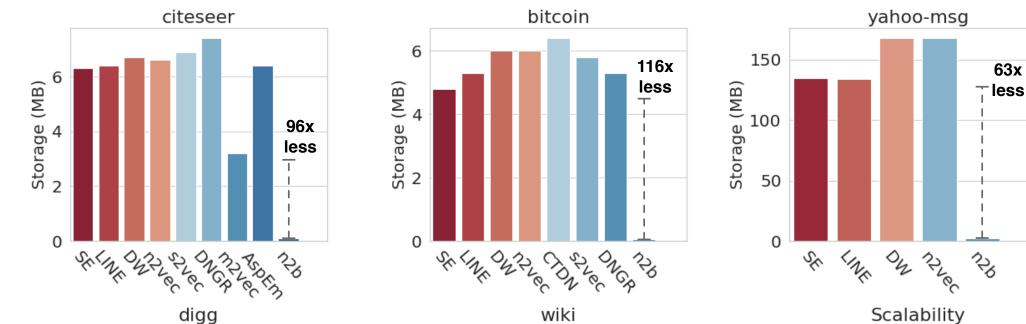
Aggregation

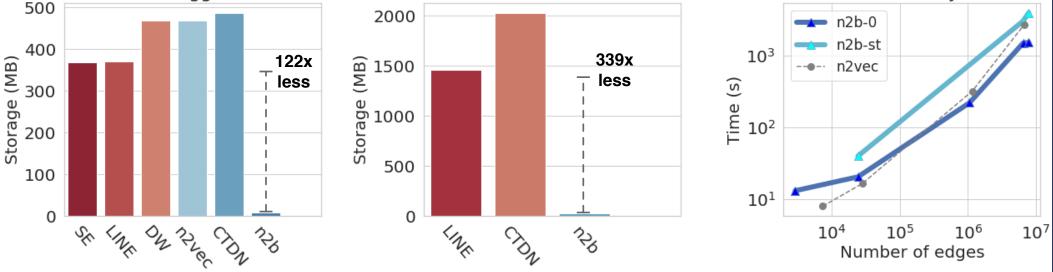
1 Identity stitching (supervised) on static graphs

Iterate over all feature distributions

Derive sparse binary hashcodes

2 Output storage. 63 – 3 Scalability. node2bits scales 339 x less than baselines. well with the graph size.


\smile			•		,		•		
Metrie	c CN	SE	LINE	DW	n2vec	s2vec	DNGR	m2vec	AspEm N2B-0
		$0.4846 \\ 0.5045 \\ 0.5028$	0.5372	0.5579	$\begin{array}{c} 0.6188 \\ 0.6211 \\ 0.6159 \end{array}$	0.8936	0.4688	0.5357	$\begin{array}{c c} 0.5049 & 0.9480^* \\ 0.5223 & 0.9196^* \\ 0.5222 & 0.9192^* \end{array}$
े ACC	$0.6851 \\ 0.6851 \\ 0.6505$	0.4760	0.7771	0.7117	$0.7636 \\ 0.7233 \\ 0.7231$	ООТ	OOM	$\begin{array}{c} 0.8233 \\ 0.7827 \\ 0.7823 \end{array}$	0.0010


Identity stitching (supervised) on temporal graphs

	Metric	$_{\rm CN}$	SE	LINE	DW	n2vec	s2vec	DNGR	AspEm	CTDNE	N2B-0	N2B-SH	N2B-LN
bitcoin		$\begin{array}{c} 0.7474 \\ 0.7174 \\ 0.7001 \end{array}$	$\begin{array}{c} 0.5828 \\ 0.5842 \\ 0.5728 \end{array}$	$\begin{array}{c} 0.6071 \\ 0.5842 \\ 0.5828 \end{array}$	$\begin{array}{c} 0.6306 \\ 0.6158 \\ 0.6158 \end{array}$	$0.6462 \\ 0.6158 \\ 0.6157$	$\begin{array}{c} 0.8025 \\ 0.7263 \\ 0.7263 \end{array}$	$\begin{array}{c} 0.5909 \\ 0.5526 \\ 0.5525 \end{array}$	$\begin{array}{c} 0.5344 \ 0.5316 \ 0.5315 \end{array}$	$0.6987 \\ 0.6000 \\ 0.5964$	$0.7584 \\ 0.7211 \\ 0.7209$	$\begin{array}{c} 0.7609 \\ 0.7268 \\ 0.7271 \end{array}$	$0.7380 \\ 0.6737 \\ 0.6735$
dige		$\begin{array}{c} 0.6217 \\ 0.6217 \\ 0.5585 \end{array}$	$\begin{array}{c} 0.5171 \\ 0.5152 \\ 0.3770 \end{array}$	$0.7878 \\ 0.7694 \\ 0.7683$	$0.7398 \\ 0.6971 \\ 0.6960$	$0.7445 \\ 0.7013 \\ 0.7003$	OOT	OOM	$\begin{array}{c} 0.5105 \\ 0.5088 \\ 0.5088 \end{array}$	$0.6967 \\ 0.5915 \\ 0.5884$	0.8185^{*} 0.7982^{*} 0.7958^{*}	$\begin{array}{c} 0.7611 \\ 0.7418 \\ 0.7411 \end{array}$	$0.7587 \\ 0.7444 \\ 0.7433$
wiki	ACC	$0.6997 \\ 0.6997 \\ 0.6699$	OOT	$0.7854 \\ 0.7132 \\ 0.7129$	OOM	OOM	OOT	OOM	$\begin{array}{c} 0.5374 \ 0.5141 \ 0.5141 \end{array}$	$\begin{array}{c} 0.7707 \\ 0.6488 \\ 0.6398 \end{array}$	$\begin{array}{c} 0.8230 \\ 0.7145 \\ 0.7088 \end{array}$	0.8259^{*} 0.7510^{*} 0.7476^{*}	$0.8214 \\ 0.7103 \\ 0.7067$
comp-X		$\begin{array}{c} 0.5970 \\ 0.5970 \\ 0.5189 \end{array}$	OOM	$\begin{array}{c} 0.5000 \\ 0.6757 \\ 0.4032 \end{array}$	OOM	OOM	OOT	OOM	$\begin{array}{c} 0.5213 \\ 0.5103 \\ 0.5103 \end{array}$	OOM	0.8095^{*} 0.8414^{*} 0.8154^{*}	$0.7496 \\ 0.7959 \\ 0.7581$	$0.7525 \\ 0.7975 \\ 0.7606$

Identity stitching (unsupervised) on static & temporal graphs

Metric	citeseer		yahoo		bit	coin	di	igg	wiki	
	CN	N2B-U	CN	N2B-U	CN	N2B-U	CN	N2B-U	CN	N2B-U
ACC	0.9141	0.8661	0.6851	0.7553	0.7474	0.7684	0.6217	0.7157	0.6997	0.7350
F1	0.9137	0.8660	0.6505	0.7518	0.7301	0.7663	0.5585	0.7074	0.6699	0.7349

References

- Bhattacharya, I., Getoor, L.: Collective entity resolution in relational data. TKDD 1 (1), 1–36 (2007)
- Dasgupta, A., Gurevich, M., Zhang, L., Tseng, B., Thomas, A.O.: Overcoming browser cookie churn with clustering. In: WSDM. pp. 83–92 (2012)
- Nguyen, G H, Boaz Lee, J..: Dynamic Network Embeddings: From Random Walks to Temporal Random Walks. In: BigData. (2018)