

Exploratory Analysis of Graph Data by Leveraging Domain Knowledge

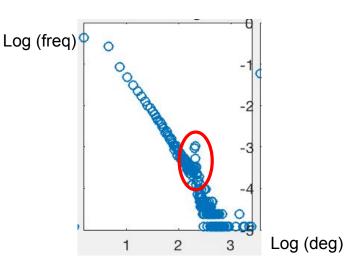
Di Jin

Danai Koutra

IEEE International Conference on Data Mining (ICDM), 2017

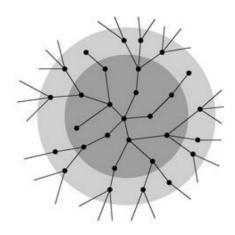
Graph invariants are prevalent

- In many tasks (e.g., anomaly detection, classification, ...)
 - Different invariants
 - Degrees
 - Betweenness
 - Average path length
 - Giant components
 -
 - Compare them with "common" laws
 - The power-like laws
 - 6 degree of separation (log(N) / log(c))
 - 1 giant component



Case

study



Are graph invariants enough to understand?

Work

flow

Experiment

Case

study

Property

Conclusion

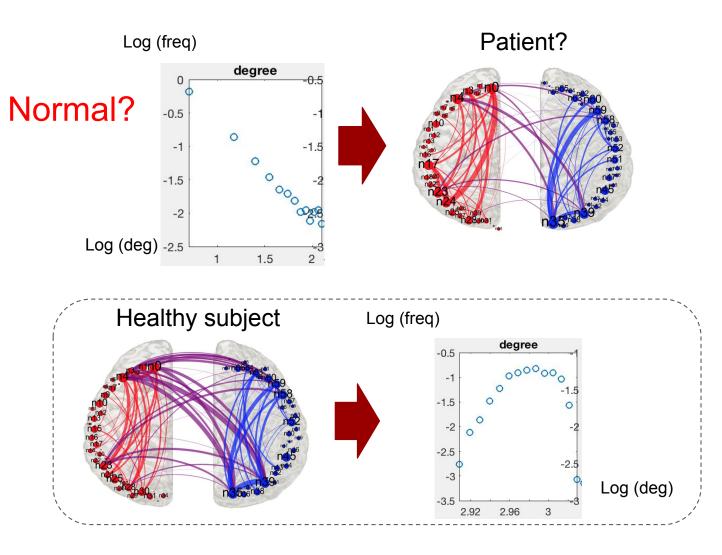
• The brain connectivity correlation graph

Formu.

Introduction

Example

Method



Case

study

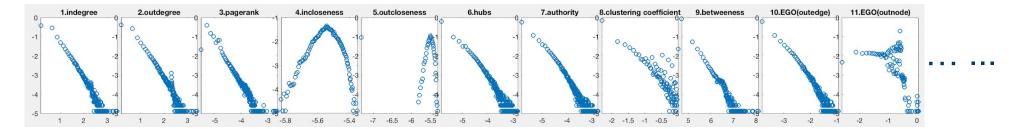
- Common laws are not golden
 - Graph invariant distributions are good.
 - But bigger picture should not be neglected.

Case

- Common laws are not golden
 - Graph invariant distributions are good.
 - But bigger picture should not be neglected. \bigcirc
- Prior/Domain knowledge is important
 - Graphs are everywhere, but the domain experts are NOT. Ο
 - "What patterns are expected?" Ο

Case

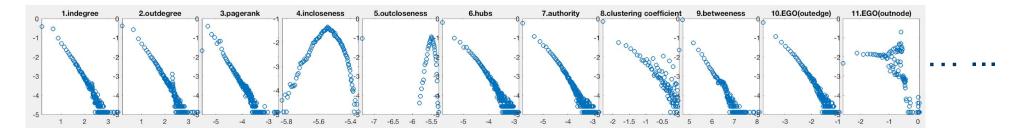
- Common laws are not golden • Graph invariant distributions are good. • But bigger picture should not be neglected.
- Prior/Domain knowledge is important
 - Graphs are everywhere, but the domain experts are NOT. \bigcirc
 - "What patterns are expected?" \bigcirc
- Useful graph invariant distributions (features) vary
 - Tons of features can be extracted, few are useful Ο
 - "Which features to explore?" Ο



Case

studv

- Common laws are not golden
 Graph invariant distributions are good.
 But bigger picture should not be neglected.
- Prior/Domain knowledge is important
 - Graphs are everywhere, but the domain experts are NOT.
 - o "What patterns are expected?"
- Useful graph invariant distributions (features) vary
 - Tons of features can be extracted, few are useful
 - "Which features to explore?"



Case

study

EAGLE: Exploratory Analysis of Graphs with domain knowLEdge

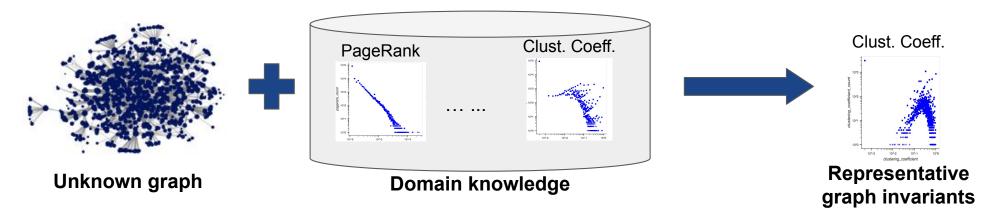
Given: an input graph & *domain knowledge* **Find:** brief summary consisting of **representative** features that satisfies a set of desired properties (e.g., diversity)

• "What patterns are expected?"

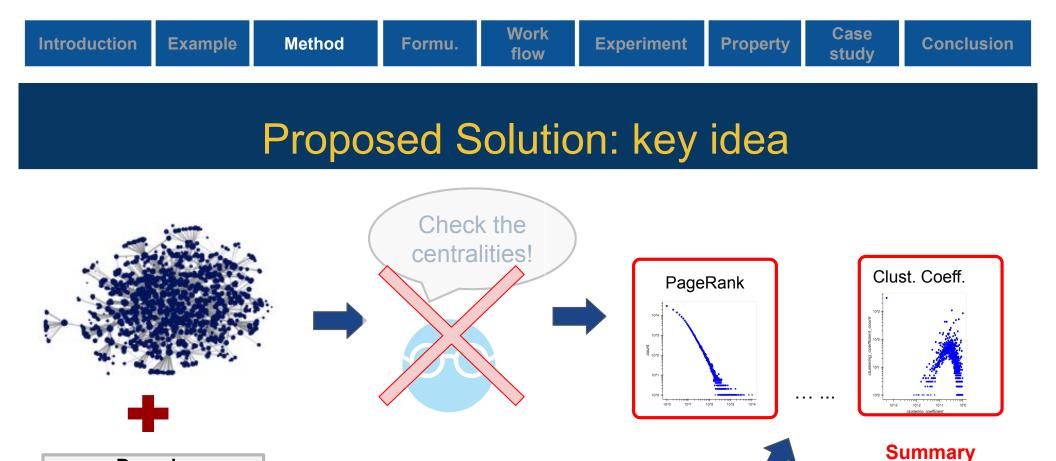
 Domain knowledge: a collection of graphs with all features in the feature space.

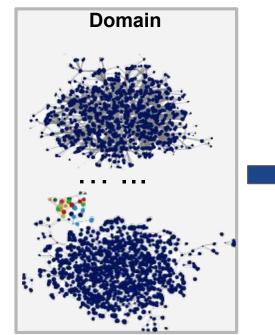
• "Which features to explore?"

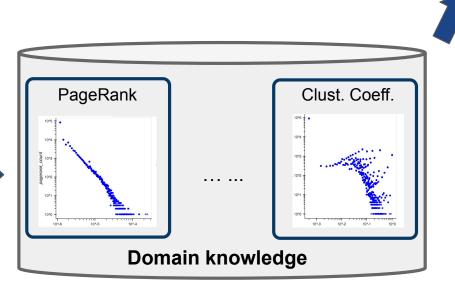
Representative features: graph invariant distributions (PDF) with desired properties.



Work Case Property Experiment Introduction Example Method Formu. Conclusion flow study Many Existing Methods Check the centralities! PageRank 10^3 10¹2



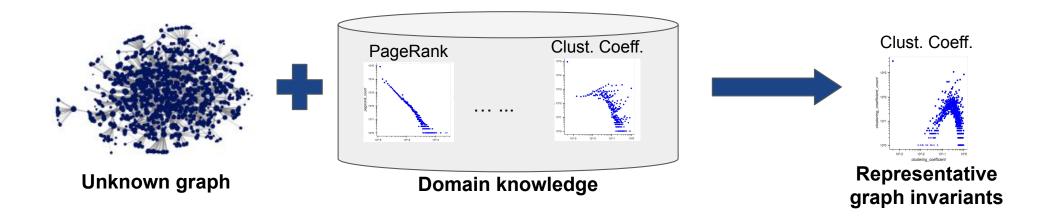




Proposed Solution: key idea

• "Summarize an unknown graph from known ones".

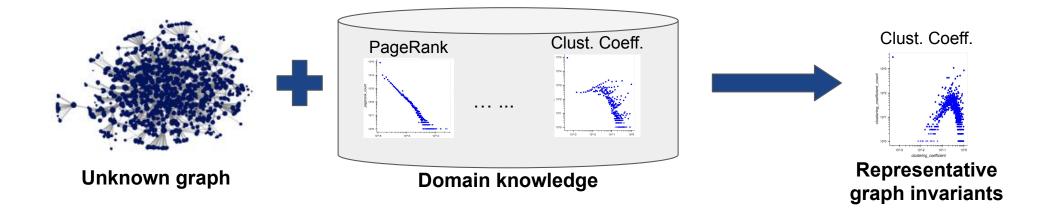
- "Known graphs": the *domain knowledge*.
- Summarize through *representative* graph invariants.
- Discovers domain-specific patterns automatically.



Proposed Solution: key idea

• "Summarize an unknown graph from known ones".

- "Known graphs": the *domain knowledge*.
- Summarize through *representative* graph invariants.
- Discovers domain-specific patterns automatically.
- Not a traditional graph summarization problem.
 - No compressed representation of an input graph.



EAGLE: Desired properties

The **summary** should be:

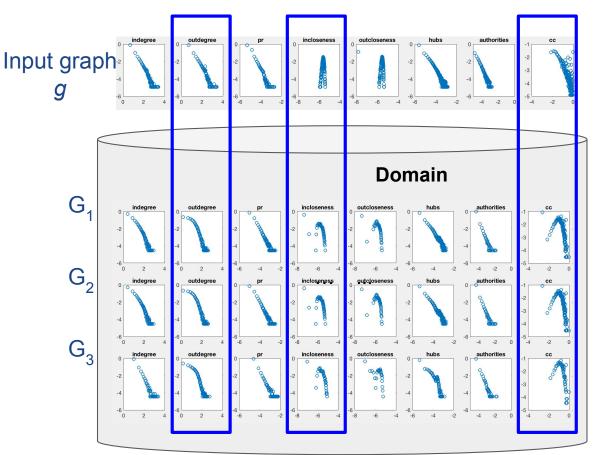
• Diverse

Concise

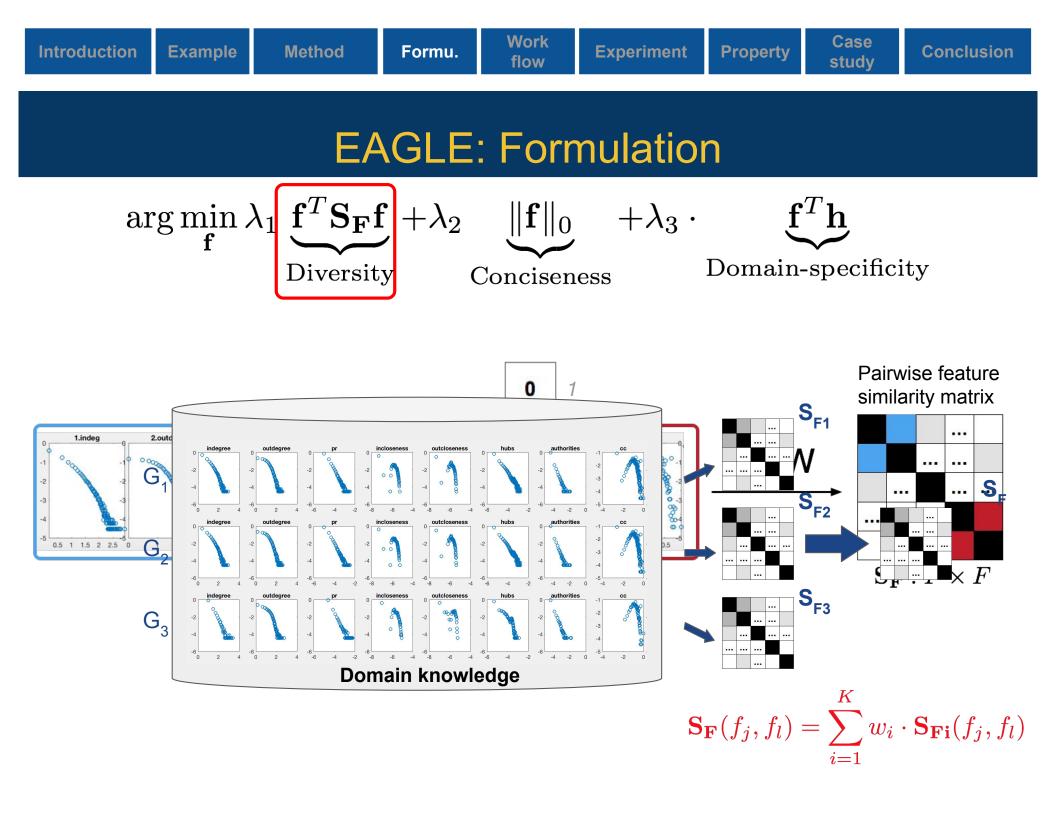
- Domain-specific

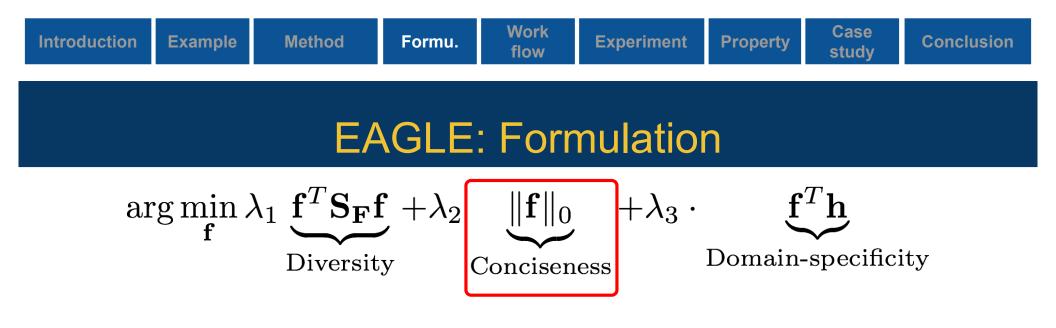
The **process** should be:

- Efficient
- Interpretable: univariate graph statistics (PDF)

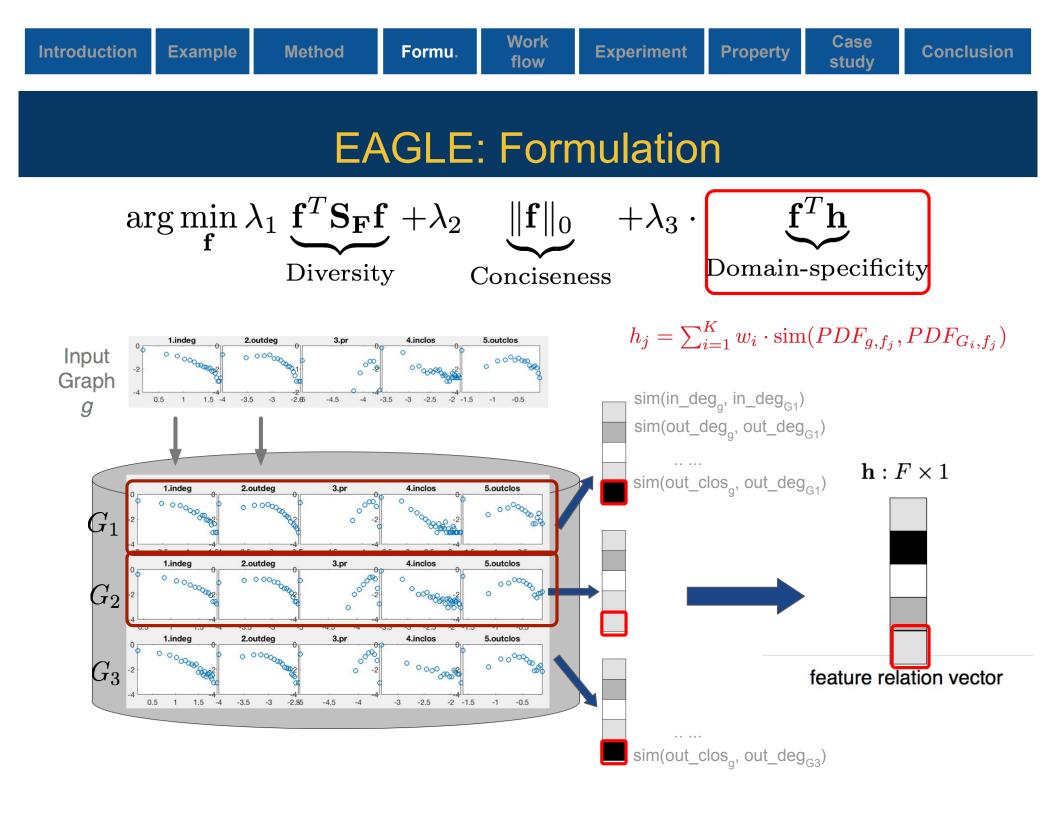


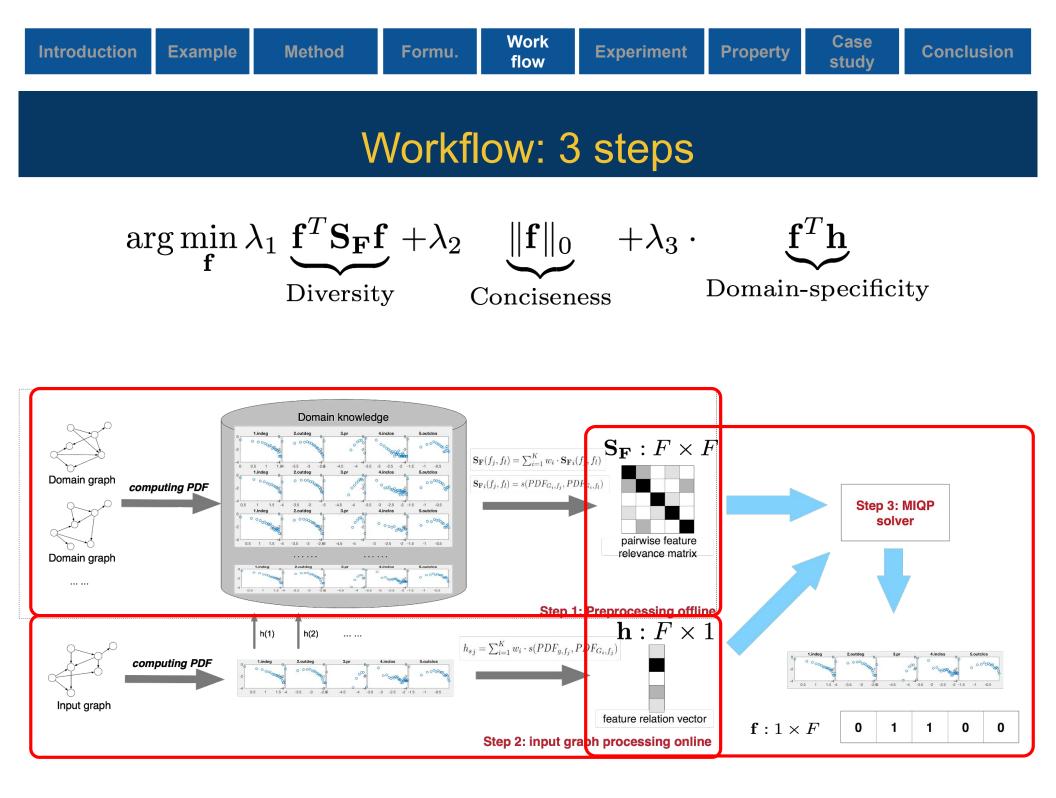
selected features (surprising)

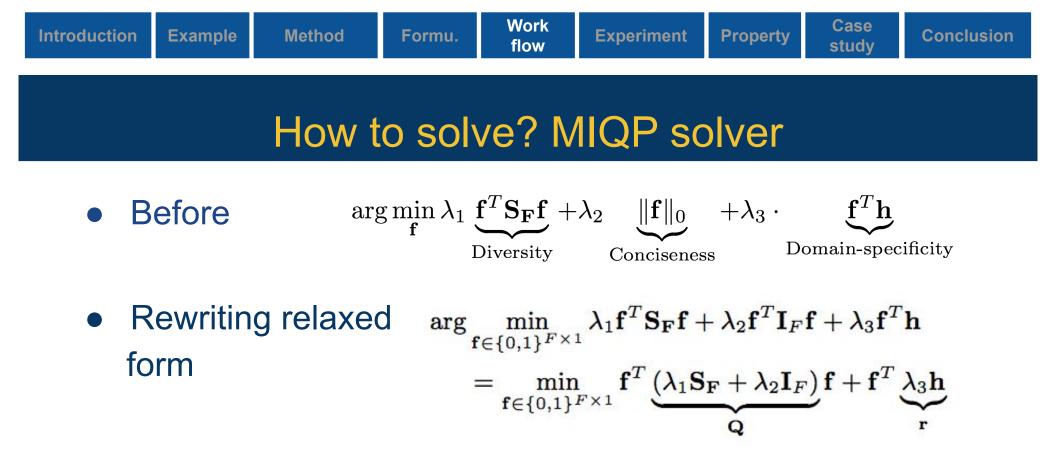


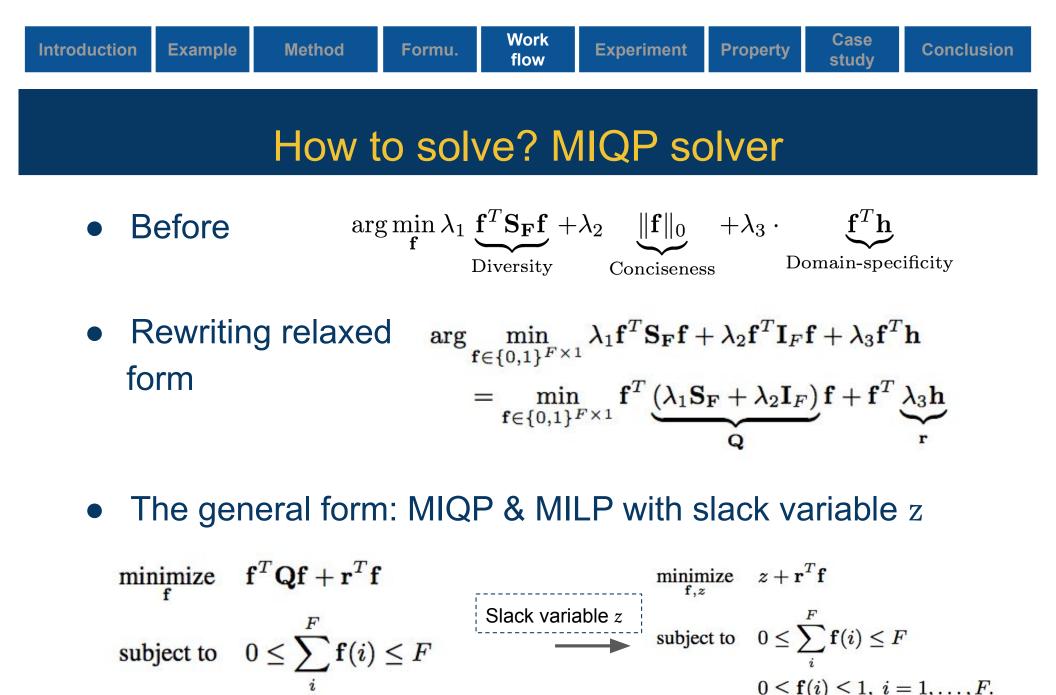


$$||\mathbf{f}||_0 \xrightarrow{Relax} ||\mathbf{f}||_2 = \mathbf{f}^T \mathbf{f}$$









 $0 \leq \mathbf{f}(i) \leq 1, \ i = 1, \dots, F.$ $\mathbf{f}^T \mathbf{Q} \mathbf{f} - z \leq 0, \ z \geq 0$

$$\arg \min_{\mathbf{f} \in \{0,1\}^{F \times 1}} \lambda_1 \mathbf{f}^T \mathbf{S}_F \mathbf{f} + \lambda_2 \mathbf{f}^T \mathbf{I}_F \mathbf{f} + \lambda_3 \mathbf{f}^T \mathbf{h}$$
$$= \min_{\mathbf{f} \in \{0,1\}^{F \times 1}} \mathbf{f}^T \underbrace{\lambda_1 \mathbf{S}_F + \lambda_2 \mathbf{I}_F}_{\mathbf{Q}} \mathbf{f} + \mathbf{f}^T \underbrace{\lambda_3 \mathbf{h}}_{\mathbf{r}}$$

- "0-pit" problem:
 - \circ $\,$ All the terms are positive
 - Optimal solution: for **f** = all-**0** vector
- Solution:
 - EAGLE-Fix: Explicitly set the # of selected features in **f**
 - EAGLE-Flex: Set negative value to the normalization term

Case

study

Experiments: data

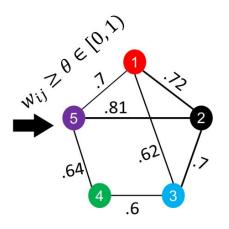
• Feature space (28 in total):

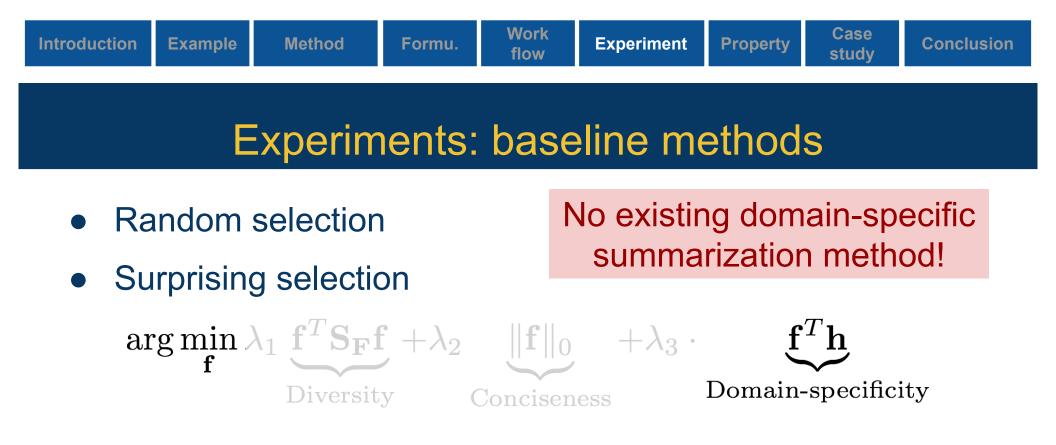
- Node-specific: in/out-degree, PageRank, hubs, authorities, roles, ...
- Structure-specific:

in/out neighbors and
in/out edges of egonets, ...,
distribution of communities,
motifs, ...

Domain	Name	Nodes	Edges	Description
Connectomics	Brain-Voxel1	3 789	399 069	directed unweighted
	Brain-Voxel2	3 789	148 648	directed unweighted
Citation networks	HepTh	27 770	352 807	directed unweighted
	HepPh	34 546	421 578	directed unweighted
Social science	Epinions	75 879	508 837	directed unweighted
	Slashdot0811	77 360	905 468	directed unweighted
	Slashdot0922	82 168	948 464	directed unweighted

- 1 mmhmm
- 2 M.M.M.
- 3 minim
- 4 minimit
- 5 minutivity

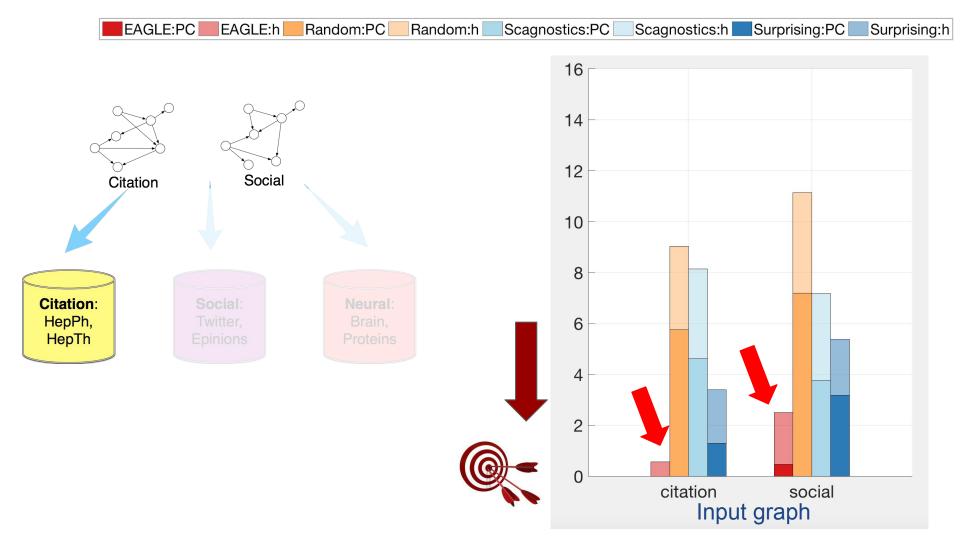




- SCAGNOSTICS
 - Pick each feature *independently* based on its anomalies in density, shape and trend.
 - 9 scores: stringiness, skewness, skinniness, etc.

Diversity & Domain-specificity

• Metric: Pearson correlation (PC)



Diversity & Domain-specificity

Work

flow

Formu.

Experiment

Case

study

Conclusion

Proteins

Property

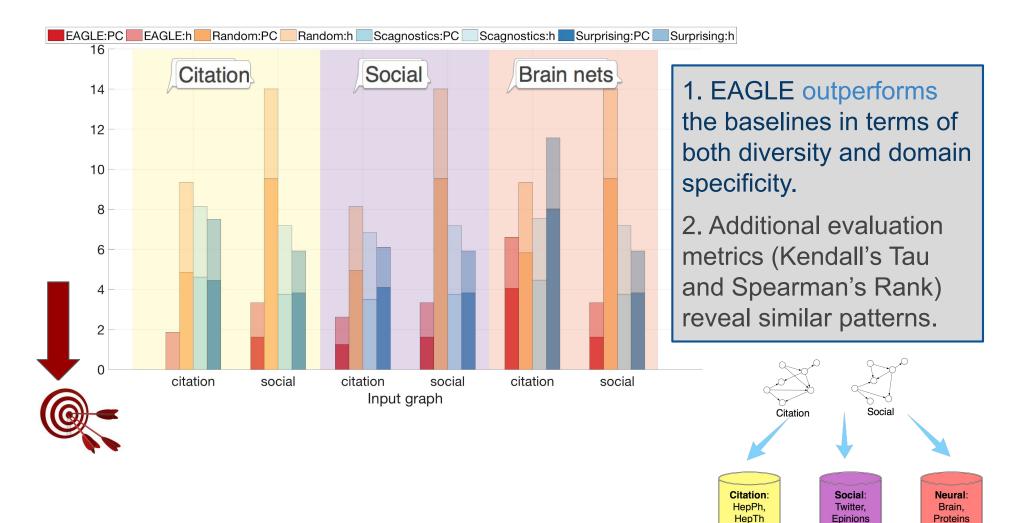
HepTh

Metric: Pearson correlation (PC)

Method

Introduction

Example

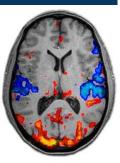


Case

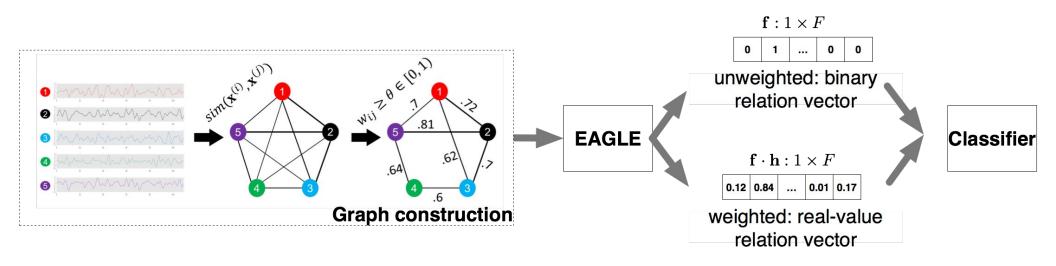
study

Case study: brain graph classification

- Setup (EAGLE-Fix & -Flex)
 - COBRE dataset: 72 patients with schizophrenia and 76 healthy controls, 1166 fMRI time series.

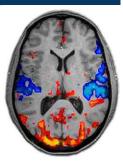


- Threshold: 0.6
- Feature space: 11 (degree, clustering coeff, betweenness, ...)

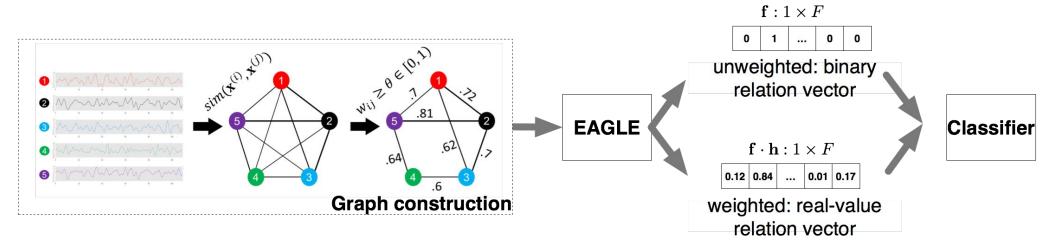


Case study: brain graph classification

- Setup (EAGLE-Fix & -Flex)
 - COBRE dataset: 72 patients with schizophrenia and 76 healthy controls, 1166 fMRI time series.



- Threshold: 0.6
- Feature space: 11 (degree, clustering coeff, betweenness, ...)
- Baselines
 - Baseline 1: average feature values
 - Baseline 2: "flatten" adjacency matrix



Case

study

Case study: brain graph classification

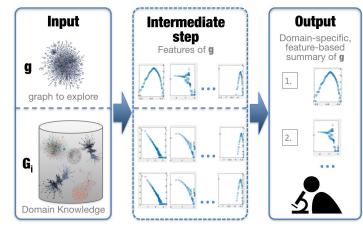
Method Category	Unweighted		Weighted		
Method Category	Ordinary	Surprising	Ordinary	Surprising	-
EAGLE-FLEX	0.6893	0.5499	0.7096	0.7296	
Eagle-Fix: 6 Eagle-Fix: 8 Eagle-Fix: 10	0.5114 0.6795 0.5003	0.5445 0.5904 0.4989	0.6961 0.7216 0.7032	0.7371 0.7079 0.6807	Classification on COBRE: AUC
Full	-	-	0.6681	0.7147	feeres per method
Baselines	Baseline 1:	0.7028	Baseline 2:	0.1099	

Although not designed explicitly for this, features selected by EAGLE can be applied to specific tasks such as classification with at least as good performance.

EAGLE-Flex improves performance by effectively eliminating noise from the data.

Conclusion & Contributions

- EAGLE: a **novel graph summarization** technique that *learns* an unknown graph from known ones.
- Informative graph features that satisfy:
 - Diversity
 - Conciseness
 - Domain-specificity
 - Interpretability
 - Efficiency

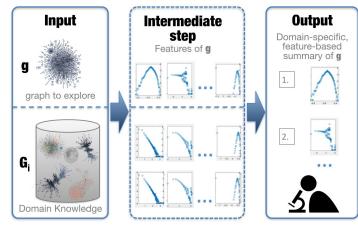


- Formulation of graph exploration as **constrained optimization**
 - Two efficient solutions: Eagle-Fix and Eagle-Flex.
 - Applications.

IntroductionExampleMethodFormu.Work
flowExperimentPropertyCase
studyConclusionThank you! Questions?• EAGLE: a novel graph summarization technique that *learns*

an unknown graph from known ones.

- Informative graph features that satisfy:
 - Diversity
 - Conciseness
 - Domain-specificity
 - Interpretability
 - Efficiency



- Formulation of graph exploration as **constrained optimization**
 - Two efficient solutions: Eagle-Fix and Eagle-Flex.
 - Applications.

Di Jin - dijin@umich.edu

