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Graph invariants are prevalent

e In many tasks (e.g., anomaly
detection, classification, ...)
o Different invariants
m Degrees

Log (freq) P

Betweenness

Average path length :

Giant components

o Compare them with “common” laws
m The power-like laws L

m 6 degree of separation (log(N) /
log(c))
m 1 giant component

Image source: Newman, Mark. Networks: an introduction.



Are graph invariants enough to understand?

e The brain connectivity correlation graph
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Are graph invariants enough to understand?

e Common laws are not golden
o Graph invariant distributions are good.
o But bigger picture should not be neglected.



Are graph invariants enough to understand?

e Common laws are not golden
o Graph invariant distributions are good.
o But bigger picture should not be neglected.

e Prior/Domain knowledge is important

o Graphs are everywhere, but the domain experts are NOT.
o “What patterns are expected?”



Are graph invariants enough to understand?

e Common laws are not golden
o Graph invariant distributions are good.
o But bigger picture should not be neglected.

e Prior/Domain knowledge is important

o Graphs are everywhere, but the domain experts are NOT.
o “What patterns are expected?”

e Useful graph invariant distributions (features) vary

o Tons of features can be extracted, few are useful
o “Which features to explore?”
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Are graph invariants enough to understand?

e Common laws are not golden
o Graph invariant distributions are good.
o But bigger picture should not be neglected.

e Prior/Domain knowledge is important

o Graphs are everywhere, but the domain experts are NOT.
o “What patterns are expected?”

e Useful graph invariant distributions (features) vary

o Tons of features can be extracted, few are useful
o “Which features to explore?”




) Work ) Case .

EAGLE: Exploratory Analysis of Graphs with domain knowLEdge

Given: an input graph & domain knowledge
Find: brief summary consisting of representative features that
satisfies a set of desired properties (e.g., diversity)

e “What patterns are expected?”
o Domain knowledge: a collection of graphs with all features in
the feature space.
e “Which features to explore?”
o Representative features: graph invariant distributions (PDF)
with desired properties.
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Many Existing Methods

Check the
centralities!
PageRank
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Image source: Duan, Wei, et al. "Topology dependent epidemic spreading velocity in weighted networks."



Proposed Solution: key idea
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Proposed Solution: key idea

e “Summarize an unknown graph from known ones”.
o “Known graphs™: the domain knowledge.
o Summarize through representative graph invariants.
o Discovers domain-specific patterns automatically.
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Proposed Solution: key idea

e “Summarize an unknown graph from known ones”.
o “Known graphs™: the domain knowledge.

o Summarize through representative graph invariants.
o Discovers domain-specific patterns automatically.
e Not a traditional graph summarization problem.

o No compressed representation of an input graph.

PageRank Clust_ Coeff. Clust. Coeff.
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Representative

Unknown graph Domain knowledge . .
graph invariants



EAGLE: Desired properties

The summary should be:
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selected features (surprising)



arg min \q

EAGLE: Formulation
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EAGLE: Formulation

arg min )\1 fTSFf —|—)\2 ||f||0 —|—>\3 y fTh
f v \ / .v . .
Diversity Conciseness Domain-specificity

[£]Jo =5 [[£]]2 = £7f




EAGLE: Formulation

I£1]o

arg min \q fISgpf 4+
f ~—— —~—~

Diversity Conciseness
5 1.indeg S 2.outdeg = 3.pr = 4.inclos = 5.outclos
InpUt Oty o 009 @ . 0 0%
-2 1] OO K= 09 off (o] o
Graph i %%? " A 1
N | g lindeg 2outdeg 3.pr 5.outclos D

O

T Y
+As - f*h
3 N~
omain-specificity

hj = Yoi—y w; - sim(PDFy ¢, PDFg, y,)

sim(in_deg, in_deg,,)
sim(out_degg, out_deg,)

sim(out_closg, out_deg,)

h: Fxl1

)

00
(/'y o %@%
T 1
1.indeg 2.outdeg 3.pr ” 4.inclos 5.outclos
o !
© 00 0 000 D & 1)
O o o OOOQQ
G 2 o % C 8§  C° o o I—— ——
2 Gﬁﬂ ° 9 %
% ' - - 2 =
o 1.indeg o
© oq

feature relation vector

sim(out_clos , out_deg;,)



Workflow: 3 steps
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How to solve? MIQP solver

in A f7Spf +Xo  |f : f'h
e Before argmin Ay £~ Sef +Xo [[fllg  +A3
Diversity Conciseness Domain-specificity

e Rewriting relaxed arg min A\ fTSgf + MfTIxf + A3f7h
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How to solve? MIQP solver

in A f7Spf +Xo  |f As - f"h
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e Rewriting relaxed arg min A\ fTSgf + MfTIxf + A3f7h
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“O-pit” Problem

arg min = AfTSEf + AofTIsf + Asf'h
fe{0,1}Fx1

T 0y 8 LRy
Q ! ¢

e “O-pit” problem:
O All the terms are positive
O Optimal solution: for f = all-0 vector

e Solution:
o EAGLE-Fix: Explicitly set the # of selected features in f
o EAGLE-Flex: Set negative value to the normalization term



Experiments: data

o Feature space (28 in total): Domain Name Nodes Edges Description
. C i Brain-Voxell 3789 399069 directed unweighted
m Node-specific: Bk Brain-Voxel2 3789 148648 directed unweighted
: g HepTh 27770 352807 directed unweighted
in/out-degree, PageRank, I BERYS HepPh 34546 421578 directed unweighted
hubs, authorities, roles, ... Epinions 75879 508837 directed unweighted
Social science Slashdot0811 77360 905468 directed unweighted
m Structure-s pecific; Slashdot0922 82168 948464 directed unweighted

# in/out neighbors and #
in/out edges of egonets, ...,
distribution of communities,
motifs, ...

@ ©6 ® ®© O




Experiments: baseline methods

e Random selection No existing domain-specific

. . summarization method!
e Surprising selection

arg min fi'h
f N~

Domain-specificity

e SCAGNOSTICS
o Pick each feature independently based on its anomalies in
density, shape and trend.
o 9 scores: stringiness, skewness, skinniness, etc.



Diversity & Domain-specificity

e Metric: Pearson correlation (PC)
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Diversity & Domain-specificity

e Metric: Pearson correlation (PC)
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Case
study

Case study: brain graph classification

e Setup (EAGLE-Fix & -Flex)

o COBRE dataset: 72 patients with schizophrenia and
76 healthy controls, 1166 fMRI time series.

o Threshold: 0.6
o Feature space: 11 (degree, clustering coeff, betweenness, ...)

f:1xF
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unweighted: binary

relation vector \
EAGLE Classifier
f-h:1xF /

0.12/0.84| ... |0.01|0.17

weighted: real-value
relation vector



Case
study

Case study: brain graph classification

e Setup (EAGLE-Fix & -Flex)

o COBRE dataset: 72 patients with schizophrenia and
76 healthy controls, 1166 fMRI time series.

o Threshold: 0.6
o Feature space: 11 (degree, clustering coeff, betweenness, ...)

e Baselines

o Baseline 1: average feature values

o Baseline 2: “flatten” adjacency matrix
f:1xF

0 1 e 0 0
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relation vector \
EAGLE Classifier
f-h:1xF /

0.12/0.84| ... |0.01|0.17

weighted: real-value
relation vector



Introduction Method Formu. L Experiment Property CERt Conclusion
flow study

Case study: brain graph classification

Unweighted Weighted
Ordinary Surprising | Ordinary Surprising

EAGLE-FLEX 0.7296 -

Method Category

EAGLE-FIX: 6 0.7371

EAGLE-FIX: 8 0.7079 Classification on
EAGLE-FIx: 10 0.6807 COBRE: AUC
Full : : 6681 07147  <iiliiés per method
Baselines Baseline 1: 0.7028 Baseline 2: 0.1099 -

Although not designed explicitly for this, features selected by
EAGLE can be applied to specific tasks such as classification
with at least as good performance.

EAGLE-Flex improves performance by effectively eliminating
noise from the data.




Conclusion & Contributions

e EAGLE: a novel graph summarization technique that /earns
an unknown graph from known ones.

e |nformative graph features that satisfy:

o Diversity [ mput | | Intermediate | Output
Conciseness =
Domain-specificity
Interpretability
Efficiency

o Two efficient solutions: Eagle-Fix and Eagle-Flex.
o Applications.



Thank you! Questions?

e EAGLE: a novel graph summarization technique that /earns
an unknown graph from known ones.

e |nformative graph features that satisfy:

o Diversity [ mput | | Intermediate | Output
Conciseness =
Domain-specificity
Interpretability
Efficiency

o Two efficient solutions: Eagle-Fix and Eagle-Flex.
o Applications.
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